【题目】近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到如下的列联表:
患心肺疾病 | 不患心肺疾病 | 合计 | |||||||||
男 | 20 | 5 | 25 | ||||||||
女 | 10 | 15 | 25 | ||||||||
合计 | 30 | 20 | 50 | ||||||||
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |||||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 | |||||
(1)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;(2)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3位进行其他方面的排查,其中患胃病的人数为,求的分布列、数学期望.参考公式:,其中
科目:高中数学 来源: 题型:
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:已知在全部人中随机抽取人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的列联表补充完整(不用写计算过程);并求出:有多大把握认为喜爱打篮球与性别有关,说明你的理由;
(2)若从该班不喜爱打篮球的男生中随机抽取3人调查,求其中某男生甲被选到的概率。下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
(参考公式: ,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在R上的偶函数,f(x)在[0,+∞)上是增函数,且f( )=0,则不等式f( )>0的解集为( )
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0, )
D.(2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】点M(x,y)与定点F(1,0)的距离和它到直线l:x=2的距离的比为 ,
(Ⅰ)求点M的轨迹.
(Ⅱ)是否存在点M到直线 +y=1的距离最大?最大距离是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时,应得到( )
A.1+2+22+…+2k-2+2k-1=2k+1-1
B.1+2+22+…+2k+2k+1=2k-1+2k+1
C.1+2+22+…+2k-1+2k+1=2k+1-1
D.1+2+22+…+2k-1+2k=2k+1-1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为: , 椭圆的右焦点为,离心率为,直线: 与椭圆相交于、两点,且
(1)椭圆的方程及求的面积;
(2)在椭圆上是否存在一点,使为平行四边形,若存在,求出的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+3在x=2时取得最小值,且函数f(x)的图象在x轴上截得的线段长为2.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(x)﹣mx的一个零点在区间(0,2)上,另一个零点在区间(2,3)上,求实数m的取值范围.
(3)当x∈[t,t+1]时,函数f(x)的最小值为﹣ ,求实数t的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com