精英家教网 > 高中数学 > 题目详情

【题目】学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)

(1)求在1次游戏中,

①摸出3个白球的概率;

②获奖的概率;

(2)求在2次游戏中获奖次数的分布列.

【答案】I)(i;(iiIIX的分布列见解析,数学期望

【解析】

解:(1)①在一次游戏中摸出i个白球为事件Ai(i0,1,2,3),则P(A3)·.

在一次游戏中获奖为事件B,则BA2∪A3,又

P(A2)·,且A2A3互斥,所以P(B)P(A2)P(A3).

(2)由题意可知X的所有可能取值为0,1,2

P(X0)2

P(X1)C21·

P(X2)2

所以X的分布列是

X

0

1

2

P




X的数学期望E(X).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的半焦距为,圆与椭圆有且仅有两个公共点,直线与椭圆只有一个公共点.

1)求椭圆的标准方程;

2)已知动直线过椭圆的左焦点,且与椭圆分别交于两点,试问:轴上是否存在定点,使得为定值?若存在,求出该定值和点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)判断函数零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(e为目然对数的底数).

(1)设函数,求函数的最小值;

(2)若函数上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在直三棱柱ABCA1B1C1中,AC3BC4AA14,点DAB的中点.

1)求证:AC ⊥BC1

2)求证:AC 1 // 平面CDB1

3)(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ex+asinxx(π+),下列说法正确的是(

A.a=1时,f(x)(0f(0))处的切线方程为2xy+1=0

B.a=1时,f(x)存在唯一极小值点x0且-1f(x0)0

C.对任意a0f(x)(π+)上均存在零点

D.存在a0f(x)(π+)上有且只有一个零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直三棱柱中的底面为等腰直角三角形,,点分别是边上动点,若直线平面,点为线段的中点,则点的轨迹为  

A. 双曲线的一支一部分 B. 圆弧一部分

C. 线段去掉一个端点 D. 抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图公园里有一湖泊,其边界由两条线段和以为直径的半圆弧组成,其中为2百米,若在半圆弧,线段,线段上各建一个观赏亭,再修两条栈道,使. 记

(1)试用表示的长;

(2)试确定点的位置,使两条栈道长度之和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在AB实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.

1)求图中a的值;

2)用样本估计总体,以频率作为概率,若在AB两块试验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望.

查看答案和解析>>

同步练习册答案