精英家教网 > 高中数学 > 题目详情

【题目】几年来,网上购物风靡,快递业迅猛发展,某市的快递业务主要由两家快递公司承接,即圆通公司与申通公司:“快递员”的工资是“底薪+送件提成”:这两家公司对“快递员”的日工资方案为:圆通公司规定快递员每天底薪为70元,每送件一次提成1元;申通公司规定快递员每天底薪为120元,每日前83件没有提成,超过83件部分每件提成10元,假设同一公司的快递员每天送件数相同,现从这两家公司各随机抽取一名快递员并记录其100天的送件数,得到如下条形图:
(1)求申通公司的快递员一日工资y(单位:元)与送件数n的函数关系;
(2)若将频率视为概率,回答下列问题: ①记圆通公司的“快递员”日工资为X(单位:元),求X的分布列和数学期望;
②小王想到这两家公司中的一家应聘“快递员”的工作,如果仅从日收入的角度考虑,请你利用所学过的统计学知识为他作出选择,并说明理由.

【答案】
(1)解:由题意:当0≤n≤83时,y=120元,

当n>85时,y=120+(n﹣83)×10=10n﹣710

∴申通公司的快递员一日工资y(单位:元)与送件数n的函数关系为:

y=


(2)解:X的所有可能取值为152,154,156,158,160

①由题意:P(X=152)=0.1,P(X=154)=0.1,

P(X=156)=0.2,P(X=158)=0.3,P(X=160)=0.3,

∴X的分布列为:

X

152

154

156

158

160

P

0.1

0.1

0.2

0.3

0.3

∴X的数学期望EX=152×0.1+154×0.1+156×0.2+158×0.3+160×0.3=157.2(元)

②设申通公司的日工资为Y,

则EY=120+0×0.1+10×0.2+30×0.1+50×0.4+70×0.2=159(元)

由于到圆通公司的日工资的数学期望(均值)没有申通公司的日工资的数学期望(均值)高,

所以小王应当到申通公司应聘“快递员”的工作


【解析】(1)当0≤n≤83时,y=120元,当n>85时,y=10n﹣710,由此能求出申通公司的快递员一日工资y(单位:元)与送件数n的函数关系.(2)①X的所有可能取值为152,154,156,158,160,分别求出相应的概率,由此能求出X的分布列和数学期望.②设申通公司的日工资为Y,求出EY159,由于到圆通公司的日工资的数学期望(均值)没有申通公司的日工资的数学期望(均值)高,从而得到小王应当到申通公司应聘“快递员”的工作.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】曲线C是平面内到直线l1:x=﹣1和直线l2:y=1的距离之积等于常数k2(k>0)的点的轨迹,下列四个结论:
①曲线C过点(﹣1,1);
②曲线C关于点(﹣1,1)成中心对称;
③若点P在曲线C上,点A、B分别在直线l1、l2上,则|PA|+|PB|不小于2k;
④设P0为曲线C上任意一点,则点P0关于直线l1:x=﹣1,点(﹣1,1)及直线f(x)对称的点分别为P1、P2、P3 , 则四边形P0P1P2P3的面积为定值4k2;其中,
所有正确结论的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了(
A.60里
B.48里
C.36里
D.24里

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=60°,平面BDEF⊥平面ABCD,四边形BDEF是正方形,点M在线段EF上,

(1)当λ= ,求证:BM∥平面ACE;
(2)如二面角A﹣BM﹣C的平面角的余弦值为﹣ ,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣φ)﹣ sin(2x﹣φ)(|φ|< )的图象向右平移 个单位后关于y轴对称,则f(x)在区间 上的最小值为(
A.﹣1
B.
C.
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=sin(x+ )cos(x+ )的图象沿x轴向右平移 个单位后,得到一个偶函数的图象,则φ的取值不可能是(
A.
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax3﹣bex(a∈R,b∈R),且f(x)在x=0处的切线与x﹣y+3=0垂直.
(1)若函数f(x)在[ ,1]存在单调递增区间,求实数a的取值范围;
(2)若f′(x)有两个极值点x1 , x2 , 且x1<x2 , 求a的取值范围;
(3)在第二问的前提下,证明:﹣ <f′(x1)<﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知AD是△ABC内角∠BAC的角平分线.
(1)用正弦定理证明:
(2)若∠BAC=120°,AB=2,AC=1,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ex , f(x)=g(x)﹣h(x),且g(x)为偶函数,h(x)为奇函数,若存在实数m,当x∈[﹣1,1]时,不等式mg(x)+h(x)≥0成立,则m的最小值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案