【题目】已知,命题对,不等式恒成立;命题对,不等式恒成立.
(1)若命题为真命题,求实数的取值范围;
(2)若为假,为真,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,斜三棱柱ABC﹣A1B1C1的侧面AA1C1C是菱形,侧面ABB1A1⊥侧面AA1C1C,A1B=AB=AA1=2,△AA1C1的面积为 ,且∠AA1C1为锐角.
(I) 求证:AA1⊥BC1;
(Ⅱ)求锐二面角B﹣AC﹣C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体ABCD﹣A1B1C1D1中,点Q为对角面A1BCD1内一动点,点M、N分别在直线AD和AC上自由滑动,直线DQ与MN所成角的最小值为θ,则下列结论中正确的是( )
A. 若θ=15°,则点Q的轨迹为椭圆的一部分
B. 若θ=30°,则点Q的轨迹为椭圆的一部分
C. 若θ=45°,则点Q的轨迹为椭圆的一部分
D. 若θ=60°,则点Q的轨迹为椭圆的一部分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足 =λ ,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知椭圆:的左、右顶点分别为A,B,其离心率,点为椭圆上的一个动点,面积的最大值是.
(1)求椭圆的方程;
(2)若过椭圆右顶点的直线与椭圆的另一个交点为,线段的垂直平分线与轴交于点,当时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大小;
(2)若b= a,△ABC的面积为 sinAsinB,求sinA及c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0 , y0)(x0≠0)作斜率为k1 , k2的两条直线分别交抛物线C于A(x1 , y1)B(x2 , y2)两点(P,A,B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求抛物线C的焦点坐标和准线方程;
(Ⅱ)设直线AB上一点M,满足 =λ ,证明线段PM的中点在y轴上;
(Ⅲ)当λ=1时,若点P的坐标为(1,﹣1),求∠PAB为钝角时点A的纵坐标y1的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)是定义在(0,+∞)上单调函数,且对x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,则方程f(x)﹣f′(x)=e的实数解所在的区间是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= (a>b>0)的图象是曲线C.
(1)在如图的坐标系中分别做出曲线C的示意图,并分别标出曲线C与x轴的左、右交点A1 , A2 .
(2)设P是曲线C上位于第一象限的任意一点,过A2作A2R⊥A1P于R,设A2R与曲线C交于Q,求直线PQ斜率的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com