精英家教网 > 高中数学 > 题目详情
13.如图所示,已知M,N是椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1上两动点,且直线OM与ON的斜率之积为-$\frac{1}{2}$(其中O为坐标原点),若点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.

分析 设出P,M,N的坐标,根据题设等式建立等式,把M,N代入椭圆方程,整理求得x2+2y220+4(x1x2+2y1y2),设出直线OM,ON的斜率,利用题意可求得x1x2+2y1y2=0,进而求得x2+2y2的值,利用椭圆的定义可推断出|PF1|+|PF2|为定值求得c,则两定点坐标可得.

解答 解:设P(x,y),M(x1,y1),N(x2,y2),
则由$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,得(x,y)=(x1,y1)+2(x2,y2),
即x=x1+2x2,y=y1+2y2
∵点M,N在椭圆上,所以$\frac{{{x}_{1}}^{2}}{4}$+$\frac{{{y}_{1}}^{2}}{2}$=1,$\frac{{{x}_{2}}^{2}}{4}$+$\frac{{{y}_{2}}^{2}}{2}$=1,
故x2+2y2=(x12+4x22+4x1x2)+2(y12+4y22+4y1y2)=20+4(x1x2+2y1y2),
设k0M,kON分别为直线OM,ON的斜率,根据题意可知k0MkON=-$\frac{1}{2}$,
∴x1x2+2y1y2=0,
∴x2+2y2=20,
所以P在椭圆$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{10}$=1上;
设该椭圆的左,右焦点为F1,F2
由椭圆的定义可推断出|PF1|+|PF2|为定值,因为c=$\sqrt{10}$,
则这两个定点坐标是(-$\sqrt{10}$,0)($\sqrt{10}$,0).

点评 本题主要考查了椭圆的简单性质.同时考查向量加法的平行四边形法则,考查了学生分析问题和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知关于x,y的不等式$\frac{|x|}{a}+\frac{|y|}{3}≤1$(a>0)所表示的平面区域的面积为24,则a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=Asin(ωx+φ)(A>0,ω>0,0<φ<2π)的图象在y轴上的截距为1,且它在右侧的第一个最大值点为(2,$\sqrt{2}$).求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}的前n项和为Sn,若Sn-Sn-1=2n-1(n≥2),且S2=3,则a1+a3的值为(  )
A.1B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过两点P1(2,2),P2(-3,-1)作一个椭圆,使它的中心在原点,焦点在x轴上,求椭圆的方程,椭圆的长半轴、短半轴的长度以及离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知曲线f(x)=e2x-2ex+ax-1存在两条斜率为3的切线,则实数a的取值范围为(  )
A.(3,+∞)B.(3,$\frac{7}{2}$)C.(-∞,$\frac{7}{2}$)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-4ax+2a+6.
(1)若函数f(x)有零点,求实数a的范围;
(2)在(1)的条件下,求g(a)=2-a•|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设定义在R上的函数f(x)、g(x)满足$\frac{f(x)}{g(x)}$=ax,且f′(x)g(x)>f(x)g′(x),$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则有穷数{$\frac{f(n)}{g(n)}$+2n-1}(n∈N*)的前8项和为(  )
A.574B.576C.1088D.1090

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x,求函数的振幅、角速度、初相位.

查看答案和解析>>

同步练习册答案