已知抛物线C的一个焦点为F(,0),对应于这个焦点的准线方程为x=-.
(1)写出抛物线C的方程;
(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程;
(3)点P是抛物线C上的动点,过点P作圆(x-3)2+y2=2的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.
解析:(1)抛物线方程为:y2=2x.
(2)①当直线不垂直于x轴时,设方程为y=k(x-),代入y2=2x,得:k2x2-(k2+2)x+.
设A(x1,y1),B(x2,y2),则x1+x2=,y1+y2=k(x1+x2-1)=.
设△AOB的重心为G(x,y)则,消去k得y2=为所求,
②当直线垂直于x轴时,A(,1),B(,-1),△AOB的重心G(,0)也满足上述方程.
综合①②得,所求的轨迹方程为y2=,
(3)设已知圆的圆心为Q(3,0),半径r=,
根据圆的性质有:|MN|=2.
当|PQ|2最小时,|MN|取最小值,
设P点坐标为(x0,y0),则y=2x0.|PQ|2=(x0-3)2+ y= x-4x0+9=(x0-2)2+5,
∴当x0=2,y0=±2时,|PQ|2取最小值5,
故当P点坐标为(2,±2)时,|MN|取最小值科目:高中数学 来源: 题型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
已知抛物线C的一个焦点为F(,0),对应于这个焦点的准线方程为x=-.
(1)写出抛物线C的方程;
(2)过F点的直线与曲线C交于A、B两点,O点为坐标原点,求△AOB重心G的轨迹方程;
(3)点P是抛物线C上的动点,过点P作圆(x-3)2+y2=2的切线,切点分别是M,N.当P点在何处时,|MN|的值最小?求出|MN|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011-2012学年新疆乌鲁木齐一中高三(上)第二次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com