精英家教网 > 高中数学 > 题目详情
9.已知直线l的方程是y=2x+3,则关于y=-x对称的直线方程是(  )
A.x-2y+3=0B.x-2y=0C.x-2y-3=0D.2x-y=0

分析 由于直线l与y=2x+3关于直线y=-x对称,故可在l上设点(x,y),关于直线y=-x对称点的坐标为(-y,-x),代入直线y=2x+3的方程,可得直线l的方程.

解答 解:在l上设点(x,y),关于直线y=-x对称点的坐标为(-y,-x),
∵直线l与y=2x+3关于直线y=-x对称,∴-x=-2y+3
即x-2y+3=0
∴对称直线方程为:x-2y+3=0.
故选:A.

点评 本题的考点是与直线关于点、直线对称的直线方程,主要考查直线关于直线的对称问题,关键是转化为点关于直线对称点的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在等差数列{an}中,$d=-\frac{1}{3},{a_7}=8$,求an和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一个四棱锥的三视图和直观图如图所示,E为侧棱PD的中点.
(1)求证:PB∥平面AEC;
(2)求三棱锥C-PAB的体积.
(3)若F为侧棱PA上一点,且$\frac{PF}{FA}$=λ,则λ为何值时,PA⊥平面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列四个命题中.真命题的个数是(  )
①存在这样的角α和β,使得cos(α+β)=cosαcosβ+sinαsinβ
②不存在无穷多个角α和β,使cos(α+β)=cosαcosβ+sinαsinβ
③对于任意的角α和β,cos(α+β)=cosαcosβ-sinαsinβ
④不存在这样的角α和β,cos(α+β)≠cosαcosβ-sinαsinβ
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据下列条件,求抛物线的方程,并画出图形:
(1)顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6;
(2)顶点在原点,对称轴是y轴,并经过点P(-6,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知m=log25,求2m-mlg2-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线C1的-个焦点是F(4,0),一条渐近线方程是$\sqrt{15}$x-y=0,抛物线C2;y2=2px(p>0)的准线恰好经过双曲线C1的左顶点.
(1)求双曲线C1和抛物线C2的标准方程;
(2)经过双曲线C1焦点F的直线1与抛物线C2交于A、B两点,若O是坐标原点.求证:0A⊥0B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2cos(ωx+φ)(0<φ<π)是奇函数.
(1)求φ的值;
(2)若f(x)在区间(0,$\frac{π}{4}$)上是增函数,求ω取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=sin(x-$\frac{π}{3}$),则其单调增区间为$[-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ]$,k∈Z.

查看答案和解析>>

同步练习册答案