【题目】如图,在平面直角坐标系中,A,B是圆O:与x轴的两个交点(点B在点A右侧),点,x轴上方的动点P使直线,,的斜率存在且依次成等差数列.
(1)求证:动点P的横坐标为定值;
(2)设直线,与圆O的另一个交点分别为S,T.求证:点Q,S,T三点共线.
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若,求曲线在点处的切线;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:
阶梯级别 | 第一阶梯水量 | 第二阶梯水量 | 第三阶梯水量 |
月用水量范围(单位:立方米) |
从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:
(Ⅰ)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数X的分布列与数学期望;
(Ⅱ)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为一阶的可能性最大,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:上一点与两焦点构成的三角形的周长为,离心率为 .
(1)求椭圆的方程;
(2)设椭圆C的右顶点和上顶点分别为A、B,斜率为的直线l与椭圆C交于P、Q两点(点P在第一象限).若四边形APBQ面积为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设A,B分别为双曲线 (a>0,b>0)的左、右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.
(1)求双曲线的方程;
(2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复平面内平行四边形ABCD(A,B,C,D按逆时针排列),A点对应的复数为2+i,向量对应的复数为1+2i,向量对应的复数为3-i.
(1)求点C,D对应的复数.
(2)求平行四边形ABCD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]
在直角坐标系中,已知曲线的参数方程为 为参数以原点为极点x轴正半轴为极轴建立极坐标系,直线的极坐标方程为:,直线的极坐标方程为.
(Ⅰ)写出曲线的极坐标方程,并指出它是何种曲线;
(Ⅱ)设与曲线交于两点,与曲线交于两点,求四边形面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com