精英家教网 > 高中数学 > 题目详情
5.已知f(x+2)=x2-3x+5,那么f(x)=x2-7x+15.

分析 利用配凑法直接求解函数的解析式即可.

解答 解:f(x+2)=x2-3x+5=(x+2)2-7(x+2)+15.
可得f(x)=x2-7x+15.
故答案为:x2-7x+15.

点评 本题考查函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.如果a,b,c满足c<b<a且ac<0,那么下列选项中不一定成立的是(  )
A.$\frac{b}{a}>\frac{c}{a}$B.c(b-a)>0C.ac(a-c)<0D.cb2<ab2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.三角函数f(x)=cos2x+2sinx的最小正周期为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图是一个半径为1的半圆,AB是直径,点C在圆弧上,且与A、B不重合,△ACD是等边三角形,设∠CAB=θ(0<θ<$\frac{π}{2}$),
(1)将三角形ABC的面积S1表示为θ的函数;
(2)将三角形ACD的面积S2表示为θ的函数;
(3)求四边形ABCD的面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.比较两数logax与2log2ax(1<a<2)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,S5=25,S10=100,
(1)求该数列的首项a1和公差d;
(2)求通项公式an和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.当m为何值时,方程x2-2(m-1)x+3m2=1有两个不等的实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\frac{1-sinx}{sinx+cosx}$(0≤x≤$\frac{π}{2}$)的最大值与最小值分别为(  )
A.1,-1B.$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$C.1,0D.$\frac{\sqrt{2}}{2}$,0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若数列{an}满足:a1=2,$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n+1}$(n≥2),则a4等于 (  )
A.$\frac{4}{3}$B.1C.$\frac{4}{5}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案