精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e-x(x-1),给出以下命题:
①当x<0时,f(x)=ex(x+1);    ②函数f(x)有五个零点;
③若关于x的方程f(x)=m有解,则实数m的取值范围是f(-2)≤m≤f(2);
④对?x1,x2∈R,|f(x2)-f(x1)|<2恒成立.
其中,正确命题的序号是________.

解:因为函数f(x)是定义在R上的奇函数,当x>0时,f(x)=e-x(x-1),
设x<0,则-x>0,所以-f(x)=f(-x)=ex(-x-1),即f(x)=ex(x+1),故①正确;
对x<0时的解析式求导数可得,f′(x)=ex(x+2),令其等于0,解得x=-2,
且当x∈(-∞,-2)上导数小于0,函数单调递减;当x∈(-2,+∞)上导数大于0,函数单调递增,
x=-2处为极小值点,且f(-2)>-1,且在x=1处函数值为0,且当x<-1是函数值为负.
又因为奇函数的图象关于原点中心对称,故函数f(x)的图象应如图所示:
由图象可知:函数f(x)有3个零点,故 ②错误;
若关于x的方程f(x)=m有解,则实数m的取值范围是-1<m<1,故③错误;
由于函数-1<f(x)<1,故有对?x1,x2∈R,|f(x2)-f(x1)|<2恒成立,即④正确.
故正确的命题为①④.
分析:设x<0,则-x>0,由函数得性质可得解析式,可判①的真假,再由性质作出图象可对其他命题作出判断.
点评:本题考查奇函数的性质,由图象作出函数的图象是解决问题的关键,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案