精英家教网 > 高中数学 > 题目详情

【题目】一艘海轮从A出发,沿北偏东75°的方向航行(2 ﹣2)nmile到达海岛B,然后从B出发,沿北偏东15°的方向航行4nmile到达海岛C.
(1)求AC的长;
(2)如果下次航行直接从A出发到达C,求∠CAB的大小?

【答案】
(1)解:由题意,在△ABC中,∠ABC=180°﹣75°+15°=120°,AB=2 ﹣2,BC=4,

根据余弦定理得

AC2=AB2+BC2﹣2AB×BC×cos∠ABC=(2 ﹣2)2+42+(2 ﹣2)×4=24,

所以AC=2


(2)解:根据正弦定理得,sin∠BAC= = ,∴∠CAB=45°
【解析】由题意,结合图形知,在△ABC中,∠ABC=120°,AB=2 ﹣2,BC=4,故可由余弦定理求出边AC的长度,由于此时在△ABC中,∠ABC=120°,三边长度已知,故可由正弦定理建立方程,求出∠CAB的正弦值,即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C1 =1(a>b>0)的左、右焦点分别为F1 , F2 , 点M在双曲线C1的一条渐近线上,且OM⊥MF2 , 若△OMF2的面积为16,且双曲线C1与双曲线C2 =1的离心率相同,则双曲线C1的实轴长为(
A.32
B.16
C.8
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为﹣ ,求双曲线的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(4,5cosα), =(3,﹣4tanα)α∈(0, ),
(1)求
(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节能环保日益受到人们的重视,水污染治理也已成为“十三五”规划的重要议题.某地有三家工厂,分别位于矩形ABCD的两个顶点A、B及CD的中点P处,AB=30km,BC=15km,为了处理三家工厂的污水,现要在该矩形区域上(含边界),且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道AO、BO、PO.设∠BAO=x(弧度),排污管道的总长度为ykm.
(1)将y表示为x的函数;
(2)试确定O点的位置,使铺设的排污管道的总长度最短,并求总长度的最短公里数(精确到0.01km).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a2=2,前n项和为 . (I)证明数列{an+1﹣an}是等差数列,并求出数列{an}的通项公式;
(II)设 ,数列{bn}的前n项和为Tn , 求使不等式 对一切n∈N*都成立的最大正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某三棱锥的三视图如图所示,则该三棱锥的各个面中,最大的面积是(
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形 是等腰梯形, , 平面 ,

(1)求证: 平面
(2)求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1 )=4,试求实数b,c的值;
(2)设n=2,若对任意x1 , x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤4恒成立,求b的取值范围;
(3)当n=1时,已知bx2+cx﹣a=0,设g(x)= ,是否存在正数a,使得对于区间 上的任意三个实数m,n,p,都存在以f1(g(m)),f1(g(n)),f1(g(p))为边长的三角形?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案