精英家教网 > 高中数学 > 题目详情
16.过抛物线y=2x2的焦点F作倾斜角为120°的直线交抛物线于A、B两点,则弦|AB|的长为(  )
A.2B.$\frac{2}{3}$C.$\frac{1}{2}$D.1

分析 求出抛物线的焦点坐标F(0,$\frac{1}{8}$),用点斜式设出直线方程与抛物线方程联解得一个关于x的一元二次方程,利用根与系数的关系结合曲线的弦长的公式,可以求出线段AB的长度.

解答 解:根据抛物线y=2x2方程得:焦点坐标F(0,$\frac{1}{8}$),
直线AB的斜率为k=tan120°=-$\sqrt{3}$,
由直线方程的点斜式方程,设AB:y-$\frac{1}{8}$=$-\sqrt{3}$x
将直线方程代入到抛物线方程当中,得:2x2+$\sqrt{3}$x$-\frac{1}{8}$=0.
设A(x1,y1),B(x2,y2
由一元二次方程根与系数的关系得:x1+x2=-$\frac{\sqrt{3}}{2}$.
x1x2=-$-\frac{1}{16}$.
y1+y2=$\frac{1}{4}$-$\sqrt{3}$(x1+x2)=$\frac{1}{4}+3$
弦长|AB|=$\sqrt{1+(-\sqrt{3})^{2}}•\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=2•$\sqrt{\frac{3}{4}+\frac{1}{4}}$=2.
故选:A.

点评 本题以抛物线为载体,考查了圆锥曲线的弦长问题,属于难题.本题运用了直线方程与抛物线方程联解的方法,对运算的要求较高.利用一元二次方程根与系数的关系和弦长公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.f(x)=4x2-mx+5在区间[-2,+∞)上是增函数,求m的范围m≤-16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题正确的个数是(  )
①$\overrightarrow{AB}+\overrightarrow{BA}=\overrightarrow 0$
②$\overrightarrow 0•\overrightarrow{AB}=\overrightarrow 0$
③$\overrightarrow a与\overrightarrow b$共线,则$\overrightarrow a•\overrightarrow b=|{\overrightarrow a}||{\overrightarrow b}|$
④$(\overrightarrow a•\overrightarrow b)•\overrightarrow c=\overrightarrow a•(\overrightarrow b\overrightarrow{•c})$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知过椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F作倾斜角120°的直线l交椭圆为A,B,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则椭圆的离心率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数$f(x)=\sqrt{{2^{a{x^2}-2ax-1}}-1}$的定义域为R,则实数a的取值范围是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知α∈(0,π),若sinα+cosα=$\frac{\sqrt{3}}{3}$,则cos2α-sin2α=(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{|x|-y+1≤0}\end{array}\right.$,则z=$\frac{y+2}{x-2}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x2+y2-4x-2y-4=0,则$\frac{2x+3y+1}{x+2}$的最小值是(  )
A.-2B.$-\frac{17}{4}$C.$-\frac{29}{5}$D.$2-\frac{{9\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)计算定积分$\int_{-4}^3{|x+2|}dx$
(2)求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.

查看答案和解析>>

同步练习册答案