精英家教网 > 高中数学 > 题目详情

如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD的长为x米 .

(1)用x表示墙AB的长;
(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y(元)表示为x(米)的函数;
(3)当x为何值时,墙壁的总造价最低?

(1)
(2)
(3)当为4米时,墙壁的总造价最低

解析试题分析:解:(1)   2分
(2)根据矩形的面积公式为长乘以宽来解得,  5分(没写出定义域不扣分)
(3)由
当且仅当,即时取等号
(米)时,墙壁的总造价最低为24000元.
答:当为4米时,墙壁的总造价最低.  8分
考点:函数的运用
点评:主要是考查了函数的模型的运用,考查了分析问题和解决问题的能力属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数),
(1)求函数的单调区间,并确定其零点个数;
(2)若在其定义域内单调递增,求的取值范围;
(3)证明不等式 ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,个单位的固体碱在水中逐渐溶化,水中的碱浓度与时间(小时)的关系可近似地表示为:,只有当污染河道水中碱的浓度不低于时,才能对污染产生有效的抑制作用.
(Ⅰ) 如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长?
(Ⅱ) 第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到时,马上再投放1个单位的固体碱,设第二次投放后水中碱浓度为,求的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据行业协会预测:某公司以每吨10万元的价格销售某种化工产品,可售出该产品1000 吨,若将该产品每吨的价格上涨%,则销售量将减少%,且该化工产品每吨的价格上涨幅度不超过%,其中为正常数 
(1)当时,该产品每吨的价格上涨百分之几,可使销售的总金额最大?
(2)如果涨价能使销售总金额比原销售总金额多,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=|x+1|,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

周长为20cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值.
(1)求的值;
(2)若处的切线方程为,求证:当时,曲线不可能在直线的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ) 当0<x≤200时,求函数v(x)的表达式;
(Ⅱ) 当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到个位,参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设某市现有从事第二产业人员100万人,平均每人每年创造产值a万元(a为正常数),现在决定从中分流x万人去加强第三产业。分流后,继续从事第二产业的人员平均每人每年创造产值可增加2x%(0<x<100)。而分流出的从事第三产业的人员,平均每人每年可创造产值1.2a万元。
(1)若要保证第二产业的产值不减少,求x的取值范围;
(2)在(1)的条件下,问应分流出多少人,才能使该市第二、三产业的总产值增加最多?

查看答案和解析>>

同步练习册答案