精英家教网 > 高中数学 > 题目详情
如图,四棱锥S-ABCD的底面是边长为2a的菱形,且SA=SC=2a,SB=SD=
2
a,点E是SC上的点,且SE=λa(0<λ≤2).
(1)求证:对任意的λ∈(0,2],都有BD⊥AE;
(2)若SC⊥平面BED,求直线SA与平面BED所成角的大小.
考点:直线与平面所成的角,直线与平面垂直的性质
专题:空间位置关系与距离,空间角
分析:(1)连结BD,AC,设BD与AC交于O,由已知得BD⊥AC,BD⊥SO,由此能证明BD⊥面SAC,从而BD⊥AE.
(2)取SC的中点F,连结OF,OE,则SA∥OF,从而OF与平面EDB所成的角就是SA与平面EDB所成的角,进而∠EOF为所求角,由此能求出直线SA与平面BED所成角.
解答: (1)证明:连结BD,AC,设BD与AC交于O. (1分)
由底面是菱形,得BD⊥AC,(2分)
∵SB=SD,O为BD中点,∴BD⊥SO,(3分)
又AC∩SO=O,∴BD⊥面SAC,(4分)
又AE?面SAC,∴BD⊥AE.(5分)
(2)解:取SC的中点F,连结OF,OE,
∴SA∥OF,∴OF与平面EDB所成的角就是SA与平面EDB所成的角,(6分)
∵SC⊥平面BED,∴FE⊥面BED,E为垂足,∴∠EOF为所求角,(7分)
在等腰△CSB中,SC=BC=2a,SB=
2
a
,得底边SB上的高为CH=
7
2
a

∴SC•BE=SB•CH,∴BE=
2
a•
7
2
a
2a
=
7
2
a,(9分)
∴在Rt△BES中,SE=
2a2-
7
4
a2
=
1
2
a

∴EF=a-
1
2
a=
1
2
a
,(10分)
在Rt△FEO中,OF=a,∴sin∠EOF=
EF
OF
=
1
2
,(11分)
即直线SA与平面BED所成角为
π
6
.(12分)
点评:本题考查异面直线垂直的证明,考查直线与平面所成角的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“x,y∈R,x2+y2=0”是“xy=0”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|y=
x
},N={x|y=log2(2-x)},则∁R(M∩N)(  )
A、[1,2)
B、(-∞,1)∪[2,+∞)
C、[0,1]
D、(-∞,0)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ=4sinθ的圆心到直线θ=
π
3
(θ∈R)的距离是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3(x>1)
-x2+2x(x≤1)
,若f(a)=-
5
4
,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=PA=2,CD=4,E,F分别是PC,PD的中点.
(Ⅰ) 证明:EF∥平面PAB;
(Ⅱ) 求直线AC与平面ABEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知A1B1C1-ABC是正三棱柱(底面为正三角形,且侧棱垂直底面),D是AC的中点.求证:AB1∥平面DBC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
1
2
,an+1=
2an
1+an2
(n∈N*).
(1)求证:
1
2
≤an<1;
(2)设数列{an}的前n项和为Sn,求证:当n≥2时,|Sn-(
S1
1
+
S2
2
+…+
Sn
n
)|<
n-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若f′(x0)=0,则函数f(x)在x=x0处有极值;
②m>0是方程
x2
m
+
y2
4
=1表示椭圆的充要条件;
③若f(x)=(x2-8)ex,则f(x)的单调递减区间为(-4,2);
④双曲线
x2
a2
-
y2
b2
=1的离心率为e1,双曲线
x2
b2
-
y2
a2
=1的离心率为e2,则e1+e2的最小值为2
2

其中为真命题的序号是
 

查看答案和解析>>

同步练习册答案