精英家教网 > 高中数学 > 题目详情

数列的前n项和记为,,点在直线上,n∈N*.
(1)求证:数列是等比数列,并求数列的通项公式
(2)设,是数列的前n项和,求的值.

(1);(2)

解析试题分析:(1)求证:数列是等比数列,并求数列的通项公式,只需证明等于一个与无关的常数,由已知点在直线上,可得,可利用进行转化,即,由此可得,即,可证得数列是等比数列,从而可求出数列的通项公式;(2)设,是数列的前n项和,求的值,首先求出数列的通项公式,故数列的通项公式为,可用拆项相消法求和,即,从而得的值.
试题解析:(1)由题意得,(1分)两式相减,得,(3分),则,当是首项为1,公比为3的等比数列.(5分)
(6分)
(2)由(1)得知,(8分),(10分)
.(12分)
考点:等比数列的定义,数列求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等比数列各项都是正数,.
(1)求数列的通项公式;
(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2an-1;数列{bn}满足bn-1bnbnbn-1(n≥2,n∈N*),b1=1.
(1)求数列{an},{bn}的通项公式;
(2)求数列的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量p=(an,2n),q=(2n+1,-an+1),n∈N*pq垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为
(1)求
(2)求数列的通项
(3)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,满足8Sna+4an+3(n∈N*),且a1a2a7依次是等比数列{bn}的前三项.
(1)求数列{an}及{bn}的通项公式;
(2)是否存在常数a>0且a≠1,使得数列{an-logabn}(n∈N*)是常数列?若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和满足,又.
(1)求实数k的值;
(2)求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,,若函数,在点处切线过点
(1)求证:数列为等比数列;
(2)求数列的通项公式和前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等比数列满足.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和公式.

查看答案和解析>>

同步练习册答案