某学校举办“有奖答题”活动,每位选手最多答10道题,每道题对应1份奖品,每份奖品价值相同.若选手答对一道题,则得到该题对应的奖品.答对一道题之后可选择放弃答题或继续答题,若选择放弃答题,则得到前面答对题目所累积的奖品;若选择继续答题,一旦答错,则前面答对题目所累积的奖品将全部送给现场观众,结束答题.假设某选手答对每道题的概率均为
,且各题之间答对与否互不影响.已知该选手已经答对前6道题.
(Ⅰ)如果该选手选择继续答题,并在最后4道题中,在每道题答对后都选择继续答题.
(ⅰ)求该选手第8题答错的概率;
(ⅱ)记该选手所获得的奖品份数为ξ,写出随机变量ξ的所有可能取值并求ξ的数学期望Eξ;
(Ⅱ)如果你是该选手,你是选择继续答题还是放弃答题?若继续答题你将答到第几题?请用概率或统计的知识给出一个合理的解释.