½«Æ溯ÊýµÄͼÏó¹ØÓÚÔ­µã£¨¼´£¨0£¬0£©£©¶Ô³ÆÕâÒ»ÐÔÖʽøÐÐÍع㣬ÓÐÏÂÃæµÄ½áÂÛ£º
¢Ùº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2bµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬b£©³ÉÖÐÐĶԳƣ®
¢Úº¯Êýy=f£¨x£©Âú×ãF£¨x£©=f£¨x+a£©-f£¨a£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬f£¨a£©£©³ÉÖÐÐĶԳƣ¨×¢£ºÈôa²»ÊôÓÚxµÄ¶¨ÒåÓòʱ£¬Ôòf£¨a£©²»´æÔÚ£©£®
ÀûÓÃÉÏÊö½áÂÛÍê³ÉÏÂÁи÷Ì⣺
£¨1£©Ð´³öº¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨2£©ÒÑÖªm£¨m¡Ù-1£©ÎªÊµÊý£¬ÊÔÎʺ¯Êýf(x)=
x+m
x-1
µÄͼÏóÊÇ·ñ¹ØÓÚijһµã³ÉÖÐÐĶԳƣ¿ÈôÊÇ£¬Çó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢ËµÃ÷ÀíÓÉ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èôº¯Êýf(x)=(x-
2
3
)(|x+t|+|x-3|)-4
µÄͼÏó¹ØÓÚµã(
2
3
£¬f(
2
3
))
³ÉÖÐÐĶԳƣ¬ÇótµÄÖµ£®
£¨1£©º¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±êΪ(
k¦Ð
2
£¬0)
£¨k¡ÊN*£©£®    ¡­£¨2·Ö£©
µ±k=2n£¨n¡ÊN*£©Ê±£¬tan(
k¦Ð
2
+x)+tan(
k¦Ð
2
-x)=tanx-tanx=0
£»
µ±k=2n+1£¨n¡ÊN*£©Ê±£¬tan(
k¦Ð
2
+x)+tan(
k¦Ð
2
-x)=-cotx+cotx=0
£¬µÃÖ¤£®                   ¡­£¨6·Ö£©
£¨2£©ÓÉf(x)=
x+m
x-1
=1+
m+1
x-1
£¬µÃf£¨x£©µÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±êΪ£¨1£¬1£©£®¡­£¨9·Ö£©f(x+1)+f(1-x)=
x+1+m
x+1-1
+
1-x+m
1-x-1
=
x+1+m
x
+
-x+1+m
-x
=2
£¬ÓɽáÂۢٵ㬶ÔʵÊým£¨m¡Ù-1£©£¬º¯Êýf(x)=
x+m
x-1
µÄͼÏó¹ØÓڵ㣨1£¬1£©³ÉÖÐÐĶԳƣ®   ¡­£¨12·Ö£©
£¨3£©ÓɽáÂÛ¢ÚF(x)=f(x+
2
3
)-f(
2
3
)=x(|x+
2
3
+t|+|x-
7
3
|)
ΪÆ溯Êý£¬¡­£¨14·Ö£©
ÆäÖÐg£¨x£©=xΪÆ溯Êý£¬¹Êh(x)=|x+
2
3
+t|+|x-
7
3
|
Ϊżº¯Êý
ÓÚÊÇ£¬ÓÉh£¨x£©=h£¨-x£©¿ÉµÃ|x+
2
3
+t|+|x-
7
3
|=|x-(
2
3
+t)|+|x+
7
3
|
£¬¡­£¨16·Ö£©
Òò´Ë£¬
2
3
+t=
7
3
£¬½âµÃt=
5
3
ΪËùÇó£®                                 ¡­£¨18·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«ÏÂÁÐÃüÌâ¸ÄдΪ¡°Èôp£¬Ôòq¡±µÄÐÎʽ£®²¢ÅжÏÕæ¼Ù£®
£¨1£©Å¼ÊýÄܱ»2Õû³ý£»
£¨2£©Æ溯ÊýµÄͼÏó¹ØÓÚÔ­µã¶Ô³Æ£»
£¨3£©ÔÚͬԲ»òµÈÔ²ÖУ¬Í¬»¡»òµÈ»¡Ëù¶ÔµÄÔ²ÖܽDz»ÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2009•Â¬ÍåÇøһģ£©½«Æ溯ÊýµÄͼÏó¹ØÓÚÔ­µã£¨¼´£¨0£¬0£©£©¶Ô³ÆÕâÒ»ÐÔÖʽøÐÐÍع㣬ÓÐÏÂÃæµÄ½áÂÛ£º
¢Ùº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2bµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬b£©³ÉÖÐÐĶԳƣ®
¢Úº¯Êýy=f£¨x£©Âú×ãF£¨x£©=f£¨x+a£©-f£¨a£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬f£¨a£©£©³ÉÖÐÐĶԳƣ¨×¢£ºÈôa²»ÊôÓÚxµÄ¶¨ÒåÓòʱ£¬Ôòf£¨a£©²»´æÔÚ£©£®
ÀûÓÃÉÏÊö½áÂÛÍê³ÉÏÂÁи÷Ì⣺
£¨1£©Ð´³öº¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨2£©ÒÑÖªm£¨m¡Ù-1£©ÎªÊµÊý£¬ÊÔÎʺ¯Êýf(x)=
x+m
x-1
µÄͼÏóÊÇ·ñ¹ØÓÚijһµã³ÉÖÐÐĶԳƣ¿ÈôÊÇ£¬Çó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢ËµÃ÷ÀíÓÉ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èôº¯Êýf(x)=(x-
2
3
)(|x+t|+|x-3|)-4
µÄͼÏó¹ØÓÚµã(
2
3
£¬f(
2
3
))
³ÉÖÐÐĶԳƣ¬ÇótµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

½«Æ溯ÊýµÄͼÏó¹ØÓÚÔ­µã£¨¼´£¨0£¬0£©£©¶Ô³ÆÕâÒ»ÐÔÖʽøÐÐÍع㣬ÓÐÏÂÃæµÄ½áÂÛ£º
¢Ùº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2bµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬b£©³ÉÖÐÐĶԳƣ®
¢Úº¯Êýy=f£¨x£©Âú×ãF£¨x£©=f£¨x+a£©-f£¨a£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬f£¨a£©£©³ÉÖÐÐĶԳƣ¨×¢£ºÈôa²»ÊôÓÚxµÄ¶¨ÒåÓòʱ£¬Ôòf£¨a£©²»´æÔÚ£©£®
ÀûÓÃÉÏÊö½áÂÛÍê³ÉÏÂÁи÷Ì⣺
£¨1£©Ð´³öº¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨2£©ÒÑÖªm£¨m¡Ù-1£©ÎªÊµÊý£¬ÊÔÎʺ¯ÊýÊýѧ¹«Ê½µÄͼÏóÊÇ·ñ¹ØÓÚijһµã³ÉÖÐÐĶԳƣ¿ÈôÊÇ£¬Çó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢ËµÃ÷ÀíÓÉ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èôº¯ÊýÊýѧ¹«Ê½µÄͼÏó¹ØÓÚµãÊýѧ¹«Ê½³ÉÖÐÐĶԳƣ¬ÇótµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010ÄêÉϺ£ÊЬÍåÇø¸ß¿¼ÊýѧһģÊÔ¾í£¨ÎÄÀíºÏ¾í£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

½«Æ溯ÊýµÄͼÏó¹ØÓÚÔ­µã£¨¼´£¨0£¬0£©£©¶Ô³ÆÕâÒ»ÐÔÖʽøÐÐÍع㣬ÓÐÏÂÃæµÄ½áÂÛ£º
¢Ùº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2bµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬b£©³ÉÖÐÐĶԳƣ®
¢Úº¯Êýy=f£¨x£©Âú×ãF£¨x£©=f£¨x+a£©-f£¨a£©ÎªÆ溯ÊýµÄ³äÒªÌõ¼þÊÇy=f£¨x£©µÄͼÏó¹ØÓڵ㣨a£¬f£¨a£©£©³ÉÖÐÐĶԳƣ¨×¢£ºÈôa²»ÊôÓÚxµÄ¶¨ÒåÓòʱ£¬Ôòf£¨a£©²»´æÔÚ£©£®
ÀûÓÃÉÏÊö½áÂÛÍê³ÉÏÂÁи÷Ì⣺
£¨1£©Ð´³öº¯Êýf£¨x£©=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐĵÄ×ø±ê£¬²¢¼ÓÒÔÖ¤Ã÷£®
£¨2£©ÒÑÖªm£¨m¡Ù-1£©ÎªÊµÊý£¬ÊÔÎʺ¯ÊýµÄͼÏóÊÇ·ñ¹ØÓÚijһµã³ÉÖÐÐĶԳƣ¿ÈôÊÇ£¬Çó³ö¶Ô³ÆÖÐÐĵÄ×ø±ê²¢ËµÃ÷ÀíÓÉ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©Èôº¯ÊýµÄͼÏó¹ØÓÚµã³ÉÖÐÐĶԳƣ¬ÇótµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸