分析 (1)首先取x∈[-$\frac{π}{2}$,0]得到-x∈[0,$\frac{π}{2}$],把-x代入时的解析式,结合偶函数的概念可求得;
(2)作出函数在[-π,0]上的图象,根据偶函数图象关于y轴轴对称得到函数在[0,π]上的图象;
(3)先求出[-π,0]上满足f(x)≥$\frac{1}{2}$时的x的取值范围,根据函数是以π为周期的周期函数,把得到的区间端点值加上π的整数倍得到要求解的区间.
解答 (1)因为f(x)是偶函数,所以f(-x)=f(x)
而当x∈[0,$\frac{π}{2}$]时,f(x)=sinx,
所以x∈[-$\frac{π}{2}$,0]时,-x∈[0,$\frac{π}{2}$],
f(x)=f(-x)=sin(-x)=-sinx.
所以当x∈[-$\frac{π}{2}$,0]时,f(x)=-sinx,
(2)函数图象如图,
(3)由于f(x)的最小正周期为π,
因此先在[-π,0]上来研究f(x)≥$\frac{1}{2}$时,即-sinx≥$\frac{1}{2}$.
所以sinx≤$-\frac{1}{2}$.所以-$\frac{5π}{6}$≤x≤-$\frac{π}{6}$,.
由周期性知,当f(x)≥$\frac{1}{2}$时,x∈[-$\frac{5π}{6}$+kπ,-$\frac{π}{6}$+kπ](k∈Z).
所以,当f(x)≥$\frac{1}{2}$时,x的取值范围是[-$\frac{5π}{6}$+kπ,-$\frac{π}{6}$+kπ](k∈Z).
点评 本题考查了函数解析式的求解及常用方法,考查了三角函数的周期及图象,考查了三角函数的奇偶性,解答此题的关键是,通过周期变换和平移变换、把要求解解析式的范围内的变量转化到已知解析式的范围内,此题是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{7}$ | B. | $\frac{4}{21}$ | C. | $\frac{1}{7}$ | D. | $\frac{2}{21}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com