·ÖÎö £¨1£©ÀûÓÃ$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£¬»¯¼òÕûÀí¿ÉµÃ¹ì¼£EµÄ·½³Ì£®
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$ÏûÈ¥yµÃ£¬Í¨¹ý¡÷£¾0µÃm2£¼2k2+1£¨*£©£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíÇó³ö${x_1}+{x_2}=\frac{-4mk}{{2{k^2}+1}}$£¬ÓÉÌâÒ⣬²»·ÁÉè$C£¨{-\frac{m}{k}£¬0}£©£¬D£¨{0£¬m}£©$£¬Í¨¹ý¡÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ý×ÜÏàµÈת»¯ÎªÏ߶ÎABµÄÖеãÓëÏ߶ÎCDµÄÖеãÖغϣ¬Çó³ök£¬¼´¿ÉµÃµ½½á¹û£®
½â´ð ½â£º£¨1£©ÒòΪMÂú×ã$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£¬ÕûÀíµÃ$\frac{x^2}{2}+{y^2}=1$£¬
¡à¹ì¼£EµÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$¡£¨4·Ö£©
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$ÏûÈ¥yµÃ£¨1+2k2£©x2+4mkx+2m2-2=0£¬¡÷=£¨4mk£©2-4£¨1+2k2£©£¨2m2-2£©=8£¨2k2-m2+1£©£¬ÓÉ¡÷£¾0µÃm2£¼2k2+1£¨*£©£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x_1}+{x_2}=\frac{-4mk}{{2{k^2}+1}}$£¬¡£¨6·Ö£©
ÓÉÌâÒ⣬²»·ÁÉè$C£¨{-\frac{m}{k}£¬0}£©£¬D£¨{0£¬m}£©$£¬¡÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ý×ÜÏàµÈ?|AC|=|BD|ºã³ÉÁ¢?Ï߶ÎABµÄÖеãÓëÏ߶ÎCDµÄÖеãÖغϡ£¨8·Ö£©
¡à$\frac{-4mk}{{2{k^2}+1}}=-\frac{m}{k}$£¬½âµÃ$k=¡À\frac{{\sqrt{2}}}{2}$£¬¡£¨10·Ö£©
¼´´æÔÚ¶¨Öµ$k=¡À\frac{{\sqrt{2}}}{2}$£¬¶ÔÓÚÂú×ãÌõ¼þm¡Ù0£¬ÇÒ$|m|£¼\sqrt{2}$£¨¾Ý£¨*£©µÄÈÎÒâʵÊým£¬
¶¼ÓС÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ýÏàµÈ£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£¬×¢ÒâÉè¶ø²»Çó·½·¨µÄÓ¦Óã®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Èôx¡Ù2£¬Ôòx2-3x+2¡Ù0 | B£® | Èôx2-3x+2=0£¬Ôòx=2 | ||
C£® | Èôx2-3x+2¡Ù0£¬Ôòx¡Ù2 | D£® | Èôx=2£¬Ôòx2-3x+2¡Ù0 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{1}{3}$ | B£® | $\frac{1}{2}$ | C£® | $-\frac{1}{3}$ | D£® | $-\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{¦Ð}{16}$ | B£® | $\frac{5}{16}$ | C£® | $\frac{1}{4}$ | D£® | $\frac{1}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | a£¾c£¾b | B£® | b£¾c£¾a | C£® | c£¾b£¾a | D£® | c£¾a£¾b |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com