1£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶¯µãM£¨x£¬y£©Âú×ãÌõ¼þ$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£®
£¨1£©Ç󶯵ãMµÄ¹ì¼£EµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßy=kx+m£¨m¡Ù0£©ÓëÇúÏßE·Ö±ð½»ÓÚA£¬BÁ½µã£¬ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC£¬DÁ½µã£¨ÇÒC¡¢DÔÚA¡¢BÖ®¼ä»òͬʱÔÚA¡¢BÖ®Í⣩£®ÎÊ£ºÊÇ·ñ´æÔÚ¶¨Öµk£¬¶ÔÓÚÂú×ãÌõ¼þµÄÈÎÒâʵÊým£¬¶¼ÓС÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ýÏàµÈ£¬Èô´æÔÚ£¬ÇókµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃ$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£¬»¯¼òÕûÀí¿ÉµÃ¹ì¼£EµÄ·½³Ì£®
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$ÏûÈ¥yµÃ£¬Í¨¹ý¡÷£¾0µÃm2£¼2k2+1£¨*£©£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨ÀíÇó³ö${x_1}+{x_2}=\frac{-4mk}{{2{k^2}+1}}$£¬ÓÉÌâÒ⣬²»·ÁÉè$C£¨{-\frac{m}{k}£¬0}£©£¬D£¨{0£¬m}£©$£¬Í¨¹ý¡÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ý×ÜÏàµÈת»¯ÎªÏ߶ÎABµÄÖеãÓëÏ߶ÎCDµÄÖеãÖغϣ¬Çó³ök£¬¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©ÒòΪMÂú×ã$\sqrt{£¨x-1{£©^2}+{y^2}}+\sqrt{£¨x+1{£©^2}+{y^2}}=2\sqrt{2}$£¬ÕûÀíµÃ$\frac{x^2}{2}+{y^2}=1$£¬
¡à¹ì¼£EµÄ·½³ÌΪ$\frac{x^2}{2}+{y^2}=1$¡­£¨4·Ö£©
£¨2£©ÁªÁ¢$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+2{y^2}=2}\end{array}}\right.$ÏûÈ¥yµÃ£¨1+2k2£©x2+4mkx+2m2-2=0£¬¡÷=£¨4mk£©2-4£¨1+2k2£©£¨2m2-2£©=8£¨2k2-m2+1£©£¬ÓÉ¡÷£¾0µÃm2£¼2k2+1£¨*£©£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x_1}+{x_2}=\frac{-4mk}{{2{k^2}+1}}$£¬¡­£¨6·Ö£©
ÓÉÌâÒ⣬²»·ÁÉè$C£¨{-\frac{m}{k}£¬0}£©£¬D£¨{0£¬m}£©$£¬¡÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ý×ÜÏàµÈ?|AC|=|BD|ºã³ÉÁ¢?Ï߶ÎABµÄÖеãÓëÏ߶ÎCDµÄÖеãÖغϡ­£¨8·Ö£©
¡à$\frac{-4mk}{{2{k^2}+1}}=-\frac{m}{k}$£¬½âµÃ$k=¡À\frac{{\sqrt{2}}}{2}$£¬¡­£¨10·Ö£©
¼´´æÔÚ¶¨Öµ$k=¡À\frac{{\sqrt{2}}}{2}$£¬¶ÔÓÚÂú×ãÌõ¼þm¡Ù0£¬ÇÒ$|m|£¼\sqrt{2}$£¨¾Ý£¨*£©µÄÈÎÒâʵÊým£¬
¶¼ÓС÷OACµÄÃæ»ýÓë¡÷OBDµÄÃæ»ýÏàµÈ£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£¬×¢ÒâÉè¶ø²»Çó·½·¨µÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®£¨a+x£©5Õ¹¿ªÊ½ÖÐx2µÄϵÊýΪ80£¬ÔòʵÊýaµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÃüÌâ¡°Èôx=2£¬Ôòx2-3x+2=0¡±µÄ·ñÃüÌâÊÇ£¨¡¡¡¡£©
A£®Èôx¡Ù2£¬Ôòx2-3x+2¡Ù0B£®Èôx2-3x+2=0£¬Ôòx=2
C£®Èôx2-3x+2¡Ù0£¬Ôòx¡Ù2D£®Èôx=2£¬Ôòx2-3x+2¡Ù0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨1£¬1£¬0£©$£¬$\overrightarrow b=£¨-1£¬0£¬2£©$£¬ÇÒ$k\overrightarrow a+\overrightarrow b$Óë$\overrightarrow a$»¥Ïà´¹Ö±£¬Ôòk=£¨¡¡¡¡£©
A£®$\frac{1}{3}$B£®$\frac{1}{2}$C£®$-\frac{1}{3}$D£®$-\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÏÂÁÐ4¸öÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨2£©£¨3£©£¨Ð´³öËùÓÐÕýÈ·µÄÌâºÅ£©£®
£¨1£©ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ¡°Èôx2=1£¬Ôòx¡Ù1¡±
£¨2£©¡°x=-1¡±ÊÇ¡°x2-5x-6=0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ
£¨3£©ÃüÌâ¡°Èôsinx¡Ùsiny£¬Ôòx¡Ùy¡±ÊÇÕæÃüÌâ
£¨4£©ÈôÃüÌâ$p£º?{x_o}¡ÊR£¬x_0^2-2{x_0}-1£¾0$£¬Ôò©Vp£º?x¡ÊR£¬x2-2x-1£¼0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®µã£¨x£¬y£©Âú×ã$\left\{\begin{array}{l}0¡Üx¡Ü4\\ 0¡Üy¡Ü4\\ x£¬y¡ÊN\end{array}\right.$£¬ÔòµãAÂäÔÚÇøÓòC£ºx2+y2-4x-4y+7¡Ü0ÄڵĸÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{16}$B£®$\frac{5}{16}$C£®$\frac{1}{4}$D£®$\frac{1}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªµÝÔöµÄµÈ²îÊýÁÐ{an}£¨n¡ÊN*£©µÄÊ×Ïîa1=1£¬ÇÒa1£¬a2£¬a4³ÉµÈ±ÈÊýÁУ¬Ôòa4+a8+a12+¡­+a4n+4=2n2+6n+4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®É躯Êýf£¨x£©=x£¨ex-1£©-ax2Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßбÂÊΪ2e-2£®
£¨1£©Çóa£»
£¨2£©Èôº¯Êýy=f£¨x£©ÔÚÇø¼ä£¨2m-3£¬3m-2£©ÉÏÊÇÔöº¯Êý£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Éèa=lg$\frac{2}{3}$£¬b=lg$\frac{2}{5}$£¬c=lg$\frac{3}{2}$£¬Ôò£¨¡¡¡¡£©
A£®a£¾c£¾bB£®b£¾c£¾aC£®c£¾b£¾aD£®c£¾a£¾b

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸