精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=loga(ax+1)+bx(a>0,a≠1)是偶函数,则(
A.b= 且f(a)>f(
B.b=﹣ 且f(a)<f(
C.b= 且f(a+ )>f(
D.b=﹣ 且f(a+ )<f(

【答案】C
【解析】解:∵f(x)=loga(ax+1)+bx(a>0,a≠1)是偶函数,

∴f(﹣x)=f(x),即loga(ax+1)﹣bx=loga(ax+1)+bx,

∴loga(ax+1)﹣bx=loga(ax+1)+(b﹣1)x,

∴﹣b=b﹣1,∴b=

∴f(x)=loga(ax+1)+ x,函数为增函数,

∵a+ >2= ,∴f(a+ )>f( ).

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 的定义域为M.
(1)求M;
(2)当x∈M时,求 +1的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点A(1,4),B(3,2),且圆心在x轴上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0 , 2),(x0+ ,﹣2).
(1)求函数y=f(x)的解析式和单调递增区间;
(2)若当0≤x≤ 时,方程f(x)﹣m=0有两个不同的实数根α,β,试讨论α+β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间四个点A(1,1,1),B(﹣4,0,2),C(﹣3,﹣1,0),D(﹣1,0,4),则直线AD与平面ABC所成的角为(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg . (Ⅰ)求函数f(x)的定义域,并证明其在定义域上是奇函数;
(Ⅱ)对于x∈[2,6],f(x)>lg 恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高,则自服药那一刻起,心率关于时间的一个可能的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的图象关于直线 对称,且两相邻对称中心之间的距离为
(1)求函数y=f(x)的单调递增区间;
(2)若关于x的方程f(x)+log2k=0在区间 上总有实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列{ }是等差数列;
(2)设bn=3n ,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案