精英家教网 > 高中数学 > 题目详情

【题目】中, 中点(如图1).将沿折起到图2中的位置,得到四棱锥.

(1)将沿折起的过程中, 平面是否成立?并证明你的结论;

(2)若与平面所成的角为60°,且为锐角三角形,求平面和平面所成角的余弦值.

【答案】1见解析2

【解析】试题分析:(1)当DP1DA时,CD⊥平面P1DA.由余弦定理得DC2=4,由勾股定理得DCAD.即得到将△PCD沿CD折起的过程中,当DP1DA时,CD⊥平面P1DA.(2)先证明在平面内的射影必在棱上,再建系,得到两个平面的法向量,得到两个法向量的夹角进而得到两个面的夹角。

解析:

1)将沿折起过程中, 平面成立,

证明:∵中点,∴

中,由余弦定理得,

.

为等腰直角三角形且

平面.

2)由(1)知平面 平面

∴平面平面

为锐角三角形,∴在平面内的射影必在棱上(如图),

平面

和平面所成的角,

为等边三角形, 中点,

故以为坐标原点,过点平行的直线为轴, 所在直线为轴, 所在直线为轴建立如图所示坐标系.

轴于交于点

易知

平面

∴可取平面的法向量

设平面的法向量,平面和平面所成的角为

,则

从而.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查某社区年轻人的周末生活状况,研究这一社区年轻人在周末的休闲方式与性别的关系,随机调查了该社区年轻人80人,得到下面的数据表:

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的年轻男性,设调查的3人在这一时间段以上网为休闲方式的人数为随机变量X,求X的分布列和数学期望;

(2)根据以上数据,能否有99%的把握认为周末年轻人的休闲方式与性别有关系”?

参考公式:

参考数据:

0.05

0.010

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的中心在原点,焦点在x轴上,椭圆的左顶点坐标为,离心率为

求椭圆E的方程;

过点作直线lEPQ两点,试问:在x轴上是否存在一个定点M,使为定值?若存在,求出这个定点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况某调查机构借助网络进行了问卷调查并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):

(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(Ⅱ)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

1分别求这5人中经常使用、偶尔或不用共享单车的人数;

2从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式 其中.

参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面有五个命题

函数的最小正周期是

终边在y轴上的角的集合是

在同一坐标系中,函数的图象和函数的图象有一个公共点;

把函数

中,若,则是等腰三角形

其中真命题的序号是( )

A.(1)(2)(3) B.(2)(3)(4

C.(3)(4)(5) D.(1)(4)(5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站调查2016年大学毕业生就业状况,其中一项数据显示“2016年就业率最高学科”为管理学,高达(数据来源于网络,仅供参考).为了解高三学生对“管理学”的兴趣程度,某校学生社团在高校高三文科班进行了问卷调查,问卷共100道选择题,每题1分,总分100分,社团随机抽取了100名学生的问卷成绩(单位:分)进行统计,得到频率分布表如下:

组号

分组

男生

女生

频数

频率

第一组

3

2

5

0.05

第二组

17

第三组

20

10

30

0.3

第四组

6

18

24

0.24

第五组

4

12

16

0.16

合计

50

50

100

1

(1)求频率分布表中 的值;

(2)若将得分不低于60分的称为“管理学意向”学生,将低于60分的称为“非管理学意向”学生,根据条件完成下面列联表,并据此判断是否有的把握认为是否为“管理学意向”与性别有关?

非管理学意向

管理学意向

合计

男生

女生

合计

(3)心理咨询师认为得分低于20分的学生可能“选择困难”,要从“选择困难”的5名学生中随机抽取2名学生进行心理辅导,求恰好有1名男生,1名女生被选中的概率.

参考公式: ,其中

参考临界值:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中).

(1)当时,求函数的图像在处的切线方程;

(2)若恒成立,求的取值范围;

(3)设,且函数有极大值点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018届四川省绵阳南山中学高三二诊】已知椭圆的焦距为,且经过点.过点的斜率为的直线与椭圆交于两点,与轴交于点,点关于轴的对称点,直线轴于点.

1)求的取值范围;

2)试问: 是否为定值?若是,求出定值;否则,说明理由.

查看答案和解析>>

同步练习册答案