【题目】在正方体中,,以为球心,为半径的球与棱,分别交于,两点,则二面角的正切值为( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】共享单车是城市慢行系统的一种创新模式,对于解决民众出行“最后一公里”的问题特别见效,由于停取方便、租用价格低廉,各色共享单车受到人们的热捧.某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20 000元,每生产一辆新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数 其中x是新样式单车的月产量(单位:辆),利润=总收益-总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2)
根据上述数据作出散点图,可知绿豆种子出芽数 (颗)和温差具有线性相关关系。
(1)求绿豆种子出芽数 (颗)关于温差的回归方程;
(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数。
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点与其短轴的一个端点是等边三角形的三个顶点,点在椭圆上,直线与椭圆交于,两点,与轴,轴分别交于点,,且,点是点关于轴的对称点,的延长线交椭圆于点,过点,分别作轴的垂线,垂足分别为,.
(1)求椭圆的方程;
(2)是否存在直线,使得点平分线段?若存在,求出直线的方程,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线经过抛物线的焦点且与此抛物线交于,两点,,直线与抛物线交于,两点,且,两点在轴的两侧.
(1)证明:为定值;
(2)求直线的斜率的取值范围;
(3)若(为坐标原点),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行了分析研究,分别记录了2016年12月1日至12月5日每天的昼夜温差以及实验室100颗种子中的发芽数,得到的数据如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取两组,用剩下的三组数据求线性回归方程,再对被选取的两组数据进行检验.
(1)求选取的两组数据恰好是不相邻的两天数据的概率.
(2)若选取的是12月1日和12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程.
(3)由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为得到的线性回归方程是可靠的,据此说明(2)中所得线性回归方程是否可靠?并估计当温差为9 ℃时,100颗种子中的发芽数.
附:回归方程中斜率和截距的最小二乘法估计公式分别为: ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在中,,,,、分别是、上的点,且,将沿折起到的位置,使,如图2.
(Ⅰ)求证:平面;
(Ⅱ)当长为多少时,异面直线,所成的角最小,并求出此时所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com