精英家教网 > 高中数学 > 题目详情

【题目】已知以点Am)(m∈Rm>0)为圆心的圆与x相交于OB两点,与y轴相交于OC两点,其中O为坐标原点.
1)当m=2时,求圆A的标准方程;
2)当m变化时,OBC的面积是否为定值?若是,请求出该定值;若不是,请说明理由;
3)设直线与圆A相交于PQ两点,且 |OP|=|OQ|,求 |PQ| 的值.

【答案】1;(2的面积为定值;(3)

【解析】

试题(1)由可求得圆心坐标,由的值可求得圆的半径,进而得到圆的方程;(2)由圆的方程可求得两点坐标,将面积转化为用两点坐标表示,可得其为定值;(3)由|OP|=|OQ|可得点O在线段PQ的垂直平分线上,结合圆心也在线段PQ的垂直平分线上,从而可得,由此可求得的值,即求得圆心坐标,结合直线与圆相交的弦长问题可求得的值.

1)当 时,圆心 的坐标为

过原点

则圆的方程是

2过原点=

则圆的方程是

,得

,得

, 即:的面积为定值;

3垂直平分线段

,解得 .

已知

的方程为

此圆与直线相交于两点,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设数列{}是等差数列,数列{}的前项和满足,,

1)求数列{}{}的通项公式:

2)设为数列{}的前项和,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,抛物线的焦点为,点是抛物线上到直线距离最小的点.

(1)求点的坐标;

(2)若直线与抛物线交于两点,中点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为进一步贯彻落实“十九”大精神,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛,从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,得到如图所示的频率分布直方图.

(1)求图中的值;

(2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面的中点.

)求证:

)求证:平面平面

)在平面内是否存在,使得直线平面,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图像在处的切线方程为:

(1)求的值;

(2)若成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:

(1)求频率直方图中a的值;

(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;

(3)从成绩在[50,70)的学生中人选2人,求这2人的成绩都在[60,70)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的切线,则的最小值为______

查看答案和解析>>

同步练习册答案