精英家教网 > 高中数学 > 题目详情

【题目】(本小题满分为14分)已知定义域为R的函数是奇函数.

1)求ab的值;

2)若对任意的t∈R,不等式ft22t)+f2t2k<0恒成立,求k的取值范围.

【答案】1a2b1.2

【解析】试题分析:(1)由函数是奇函数可得,将代入两个特殊值得到关于的方程组求解其值;(2)首先利用定义法判断函数的单调性,利用奇函数将不等式变形为fx2-x< f-2x2+t),,利用单调性得到关于的恒成立不等式,分离参数后通过求函数最值得到的取值范围

试题解析:(1fx)是奇函数且0Rf0=0

又由f1=-f-1)知 a=2

fx=

2)证明设x1,x2-∞,+∞)且x1<x2

·

y=2x在(-∞,+∞)上为增函数且x1<x2

y=2x>0恒成立,

∴fx1-fx2>0 fx1>fx2

∴fx)在(-∞,+∞)上为减函数

∵fx)是奇函数fx2-x+f2x2-t<0等价于fx2-x<-f2x2-t=f-2x2+t

∵fx)是减函数,∴x2-x>-2x2+t

即一切x∈R3x2-x-t>0恒成立

∴△=1+12t<0,即t<

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为,后2天均为,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中, 分别是的中点.

1)证明:平面平面

2上是否存在点,使平面?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为评选“全国卫生城市”,从200名志愿者中随机抽取40名志愿者参加街道卫生监督活动,经过统计这些志愿者的年龄介于25岁和55岁之间,为方便安排任务,将所有志愿者按年龄从小到大分成六组,依次为,如图是按照上述分组方法得到的频率分布直方图的一部分,已知第四组的人数为4人.

(1)求第五组的频率并估计200名志愿者中年龄在40岁以上(含40岁)的人数;

(2)若从年龄位于第四组和第六组的志愿者中随机抽取两名,记他们的年龄分别为,事件,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调增区间;

(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a﹣b|.
(1)求ξ=1的概率;
(2)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式x2≤5x﹣4的解集为A.
(1)求集合A;
(2)设关于x的不等式x2﹣(a+2)x+2a≤0的解集为M,若MA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】简阳羊肉汤已入选成都市级非遗项目,成为简阳的名片。当初向各地作了广告推广,同时广告对销售收益也有影响。在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.

(Ⅰ)根据频率分布直方图,计算图中各小长方形的宽度;

(Ⅱ)根据频率分布直方图,估计投入4万元广告费用之后,并将各地销售收益的平均值(以各组的区间中点值代表该组的取值);

(Ⅲ)按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入x(单位:万元)

1

2

3

4

5

销售收益y(单位:百万元)

2

3

2

7

表中的数据显示,之间存在线性相关关系,请将(Ⅱ)的结果填入空白栏,并计算关于的回归方程.回归直线的斜率和截距的最小二乘估计公式分别为 ,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax+1|+|2x﹣1|(a∈R).

(1)当a=1时,求不等式f(x)≥2的解集;

(2)若f(x)≤2xx[,1]时恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案