精英家教网 > 高中数学 > 题目详情
10.求适合下列条件的双曲线标准方程.
(1)a=12,b=5;
(2)焦点在y轴上,焦距是8,渐近线方程为y=$±\frac{1}{3}x$.

分析 求出双曲线的几何量,再写出双曲线的标准方程.

解答 解:(1)a=12,b=5,双曲线的标准方程为$\frac{{x}^{2}}{144}-\frac{{y}^{2}}{25}$=1或$\frac{{y}^{2}}{144}-\frac{{x}^{2}}{25}$=1;
(2)设双曲线的标准方程为$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$,则渐近线方程为$y=±\frac{a}{b}x$,依题意得$\begin{array}{l}\frac{a}{b}=\frac{1}{3}$,∴b=3a,
∵2c=8,∴c=4,∴a2=$\frac{8}{5}$,${b}^{2}=\frac{72}{5}$,∴双曲线的标准方程为$\frac{{y}^{2}}{\frac{8}{5}}-\frac{{x}^{2}}{\frac{72}{5}}$=1.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若函数$f(x)=1-2x,g[f(x)]=\frac{{{x^2}-1}}{x^2}(x≠0)$,则g(3)=(  )
A.1B.0C.$\frac{8}{9}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.
(Ⅰ)证明:|$\frac{1}{3}$a+$\frac{1}{6}$b|<$\frac{1}{4}$;
(Ⅱ)比较|1-4ab|与2|a-b|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=|sinx|•cosx,则下列说法正确的是(  )
A.f(x)的图象关于直线x=$\frac{π}{2}$对称B.f(x)的周期为π
C.若|f(x1)|=|f(x2)|,则x1=x2+2kπ(k∈Z)D.f(x)在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求与圆(x-2)2+y2=2相切且在x轴,y轴上截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.满足{1}?A⊆{1,2,3,4}的集合A的个数为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若α∈($\frac{3π}{2}$,2π),化简$\sqrt{1-sinα}$+$\sqrt{1+sinα}$=$-2cos\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直角梯形ABCD中,AD∥BC,$AB=1,AD=\sqrt{3}$,AB⊥BC,CD⊥BD,如图(1)把△ABD沿BD翻折,使得平面A'BD⊥平面BCD,如图(2).则三棱锥A'-BDC的体积为$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=$\frac{π}{2}$cosx,则f′($\frac{π}{2}$)=(  )
A.-$\frac{π}{2}$B.1C.0D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案