精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=log (x2﹣2x)的单调递增区间是(
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)

【答案】C
【解析】解:令t=x2﹣2x>0,求得x<0,或x>2,故函数的定义域为(﹣∞,0)∪(2,+∞),且f(x)=log (x2﹣2x)=g(t)=log t.
根据复合函数的单调性,本题即求函数t=x2﹣2x在定义域内的减区间.
再利用二次函数的性质可得函数t=x2﹣2x在定义域内的减区间为(﹣∞,0),
故选:C.
令t=x2﹣2x>0,求得函数的定义域,且f(x)=g(t)=log t,根据复合函数的单调性,本题即求函数t=x2﹣2x在定义域内的减区间,利用二次函数的性质可得函数t=x2﹣2x在定义域内的减区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数f(x)的零点与g(x)=4x+2x﹣2的零点之差的绝对值不超过0.25,则f(x)可以是(
A.f(x)=4x﹣1
B.f(x)=(x﹣1)2
C.f(x)=ex﹣1
D.f(x)=ln(x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F(x)=f(x)+f(﹣x)在区间 是单调递减函数,将F(x)的图象按向量 平移后得到函数G(x)的图象,则G(x)的一个单调递增区间是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x| <3x<9},B={x|log2x>0}.
(1)求A∩B和A∪B;
(2)定义A﹣B={x|x∈A且xB},求A﹣B和B﹣A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=3x
(1)求 f(x),g(x);
(2)若对于任意实数t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求实数a的取值范围;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是椭圆的左、右焦点,动点上,连结并延长点,使得,设点的轨迹为.

(1)求的方程;

(2)设为坐标原点,点,连结点,若直线的斜率与直线的斜率存在且不为零,证明: 这两条直线的斜率之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,曲线C的参数方程为θ为参数),直线l的参数方程为.

(1)若a=1,求Cl的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题实数满足),命题实数满足.

1)若且“”为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条宽为的两平行河岸有村庄和供电站,村庄的直线距离都是与河岸垂直,垂足为现要修建电缆,从供电站向村庄供电.修建地下电缆、水下电缆的费用分别是万元万元.

(1) 如图①,已知村庄原来铺设有电缆,现先从处修建最短水下电缆到达对岸后后,再修建地下电缆接入原电缆供电,试求该方案总施工费用的最小值;

(2) 如图②,点在线段上,且铺设电缆的线路为.若,试用表示出总施工费用(万元)的解析式,并求的最小值.

查看答案和解析>>

同步练习册答案