精英家教网 > 高中数学 > 题目详情
12.已知lg2=a,lg3=b,求下列各式的值:
(1)lg12         
(2)log29.

分析 (1)化简所求表达式为对数符号,求解即可.
(2)化简所求表达式为对数符号,求解即可.

解答 解:(1)lg12=lg(3×22)=lg3+2lg2=b+2a        …(6分)
(2)log29=$\frac{lg9}{lg2}$=$\frac{2b}{a}$          …(12分)

点评 本题考查对数 的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知集合P={x|6<x<8},Q={x|x∈N},则P∩Q等于(  )
A.{7}B.{6,7}C.{6,7,8}D.{x|6<x<8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点A(1,1)在矩阵$M=[{\begin{array}{l}1&a\\ 0&b\end{array}}]$对应的变换作用下得到点B(1,2),点B在矩阵$N=[{\begin{array}{l}m&{-1}\\ n&0\end{array}}]$对应的变换作用下得到点C(-2,1),求矩阵MN的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+x,则f(-2)等于(  )
A.-2B.2C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.椭圆$\frac{x^2}{5}+\frac{y^2}{3}=1$的离心率是(  )
A.$\frac{2}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$\frac{2}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知中心在原点O,焦点在x轴上的椭圆,离心率$e=\frac{1}{2}$,且椭圆过点$(1,\frac{3}{2})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)椭圆左,右焦点分别为F1,F2,过F2的直线l与椭圆交于不同的两点A、B,则△F1AB的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.幂函数f(x)=xα过点(2,4),则定积分$\int\begin{array}{l}1\\-1\end{array}f(x)dx$=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=sinφ+cosφ}\\{y=sin2φ}\end{array}\right.$(φ 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为:ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).
(1)若曲线C1与C2只有一个公共点,求t的取值范围.
(2)当t=-2时,求曲线C1的点与曲线C2上任取一点的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如果执行如图所示的程序框图,那么输出的S等于(  )
A.2 450B.2 500C.2 550D.2 652

查看答案和解析>>

同步练习册答案