精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=x2-ax+b,问:(1)讨论函数f(sinx)在( )内的单调性并判断有无极值,有极值时求出极值;(2)记f0(x)= - x + ,求函数| f ( sin x ) - ( sin x )| 在[ . ]上的最大值D,(3)在(2)中,取a0=b0=0,求z= b - 满足D ≤ 1时的最大值
(1)讨论函数f(sinx)在()内的单调性并判断有无极值,有极值时求出极值;
(2)记f0(x)=,求函数上的最大值D,
(3)在(2)中,取a0=b0=0,求z=满足D1时的最大值

【答案】
(1)

解:f(sinx)=sin2x-asinx+b=sinx(sinx-a)+b,,=(2sinx-a)cosx,

①当a-2,bR时,函数f(sinx)单调递增,无极值

②当a,bR时,函数f(sinx)单调递减,无极值

③当-2a2,在()内存在唯一的x0,是得2sinx=a,-xx0函数f(sinx)单调递增;X0X时,函数f(sinx)单调递增,因此,-2a2,bR时,函数f(x)在X0处有极小值f(sinX0)=f()=


(2)

解:时,=(a0-a)sinx+b-b0.当0时,取x=,等号成立。当0时,取x=-,等号成立,由此可知最大值为D=+

(3)D1,即+1,此时0a21,-1b1,从而z=b-1


(3)

解:D1,即+1,此时0a21,-1b1,从而z=b-1

取a=0,b=1.则+1,并且z=b-=1.由此可知,z=满足条件D1的最大值为1


【解析】函数导数解答题中贯穿始终的是数学思想方法,在含有参数的试题中,分类与整合思想是必要的,由于是函数问题,所以函数思想、数形结合思想也是必要的,把不等式问题转化为最值问题,把方程的根转化为零点问题等,转化与化归思想也起着同样的作用,解决函数、导数的解答题要充分,注意数学思想方法的应用。
【考点精析】通过灵活运用函数的单调性和二次函数在闭区间上的最值,掌握注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种;当时,当时,;当时在上递减,当时,即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个二元码是由0和1组成的数字其中称为第k位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0)已知某中二元码的码元满足如下校验方程组:其中运算定义为:现已知一个这种二元码在通信过程中仅在第k位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(I)估计顾客同时购买乙和丙的概率;
(II)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;
(III)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:

年份

2010

2011

2012

2013

2014

时间代号t

1

2

3

4

5

储蓄存款y(千亿元)

5

6

7

8

10


(1)求y关于t的回归方程
(2)用所求回归方程预测该地区2015年()的人民币储蓄存款.
附:回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程中仅有一个实根的是 ,(写出所有正确条件的编号)
1、a=-3,b=-3;2.a=-3,b=2;3、a=-3,b2;4、a=0,b=2;5、a=1,b=2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量平行.
(1)求A。
(2)若a=, b=2求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,c的极坐标方程为=2sin
(1)写出c的直角坐标方程;
(2)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,△PAD为正三角形,AB∥CD,AB=2CD,∠BAD=90°,PA⊥CD,E为棱PB的中点 (Ⅰ)求证:平面PAB⊥平面CDE;
(Ⅱ)若直线PC与平面PAD所成角为45°,求二面角A﹣DE﹣C的余弦值.

查看答案和解析>>

同步练习册答案