【题目】已知函数定义在区间上,,且当时,恒有,又数列满足,,设,对于任意的,的最小自然数的值为_______________________________.
【答案】5
【解析】
先明确函数的奇偶性,令x=an,y=﹣an,可得f (an)与f (an+1)的关系,求出即可得到,利用最值建立的不等式关系,即可得到结果.
令x=y=0时,则由已知有f(0)﹣f(0)=f(),
可解得f (0)=0.
再令x=0,y∈(﹣1,1),则有f(0)﹣f(y)=f(),即f (﹣y)=﹣f (y),
∴f (x)是(﹣1,1)上的奇函数.
令x=an,y=﹣an,于是f(an)﹣f(﹣an)=f(),
由已知得2f (an)=f (an+1),
∴,
∴数列{f(an)}是以f(a1)=f()=﹣1为首项,2为公比的等比数列.
∴f(an)═﹣1×2n﹣1=2n﹣1
∴,∴
又任意的,
∴,即
故自然数的最小值为5.故答案为:5
科目:高中数学 来源: 题型:
【题目】已知函数,,其中为常数,函数和的图象在它们与坐标轴交点处的切线互相平行.
(1)求的值;
(2)若存在,使不等式成立,求实数的取值范围;
(3)令,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率为,且过点.
(1)求椭圆的方程;
(2)设为椭圆上任一点, 为其右焦点,点满足.
①证明: 为定值;
②设直线与椭圆有两个不同的交点,与轴交于点.若成等差数列,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:
一次购物款(单位:元) | |||||
顾客人数 |
统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.
(Ⅰ)试确定, 的值,并估计每日应准备纪念品的数量;
(Ⅱ)为了迎接春节,商场进行让利活动,一次购物款元及以上的一次返利元;一次购物不超过元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元) | ||||
返利百分比 |
请问该商场日均大约让利多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一个特定时段内,以点E为中心的7n mile以内海域被设为警戒水域.点E正北55n mile处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40n mile的位置B,经过40分钟又测得该船已行驶到点A北偏东(其中,)且与点A相距10n mile的位置C.
(I)求该船的行驶速度(单位:n mile /h);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列与满足,.
(1)若,且,求的通项公式;
(2)设的第项是最大项,即,求证:的第项是最大项;
(3)设,求的取值范围,使得有最大值与最小值,且.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,
(1)若函数f(x)有两个零点,求实数a的取值范围;
(2)若a=3,且对任意的x1∈[-1,2],总存在,使g(x1)-f(x2)=0成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com