精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形为平行四边形,  平面,且的中点.

1)求证: 平面

2)求二面角的余弦值的大小.

【答案】1)见解析(2

【解析】试题分析:(1)取AD的中点N,连接MNNF.由三角形中位线定理,结合已知条件,证出四边形MNFE为平行四边形,从而得到EMFN,结合线面平行的判定定理,证出EM∥平面ADF;(2)求出平面ADF、平面BDF的一个法向量,利用向量的夹角公式,可求二面角的大小.

解析:

(1)解法一:取的中点,连接.

中, 的中点, 的中点,

所以,又因为

所以.

所以四边形为平行四边形,所以

又因为平面平面,故平面.

解法二:因为平面

故以为原点,建立如图所示的空间直角坐标系.

由已知可得

设平面的一个法向量是.

,则.

又因为,所以,又平面

平面.

2)由(1)可知平面的一个法向量是.

易得平面的一个法向量是

所以,又二面角为锐角,

故二面角的余弦值大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 是等边三角形, 的中点,四边形为直角梯形, .

1)求证:平面平面

2)求四棱锥的体积;

3)在棱上是否存在点,使得平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为函数的导函数,且.

(1)判断函数的单调性;

(2)若,讨论函数零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题“若,则”的逆否命题为“若,则

B. 若命题 ”,则命题的否定为“

C. ”是“”的充分不必要条件

D. ”是“直线与直线互为垂直”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,一个焦点坐标是,离心率为.

(1)求椭圆的标准方程;

(2)过作直线交椭圆于两点, 是椭圆的另一个焦点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据某市地产数据研究的数据显示,2016年该市新建住宅销售均价走势如下图所示,为抑制房价过快上涨,政府从8月采取宏观调控措施,10月份开始房价得到很好的抑制.

(1)地产数据研究院发现,3月至7月的各月均价(万元/平方米)与月份之间具有较强的线性相关关系,试建立关于的回归方程(系数精确到0.01);政府若不调控,依此相关关系预测第12月份该市新建住宅销售均价;

(2)地产数据研究院在2016年的12个月份中,随机抽取三个月的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为,求的分布列和数学期望.

参考数据:

回归方程中斜率和截距的最小二乘法估计公式分别为:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线处的切线方程;

(2)当,不等式恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1时,求上的单调区间;

2 均恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

同步练习册答案