【题目】已知函数.
(1)当时,求的单调区间;
(2)若为的极小值点,求的取值范围.
【答案】(1)递增区间为,递减区间为(2)
【解析】
(1)首先求出函数的导函数,记,则,分析的单调性,即可求出函数的单调性;
(2)依题意可得,记,则.
再令,则,利用导数分析的单调性,即可得到在有零点,即在单调递减,在单调递增,所以,再对分类讨论可得;
解:(1)当时,,
记,则,
当时,,,
所以,在单调递增,
所以,
因为,所以在为增函数;
当时,,,所以,
所以在为减函数.
综上所述,的递增区间为,递减区间为.·
(2)由题意可得,.
记,则.
再令,则.
下面证明在有零点:
令,则在是增函数,所以.
又,,
所以存在,,且当,,,,
所以,即在为减函数,在为增函数,
又,,所以,
根据零点存在性定理,存在,
所以当,,
又,,
所以,即在单调递减,在单调递增,
所以.
①当,,恒成立,所以,即为增函数,
又,所以当,,为减函数,,,为增函数,是的极小值点,所以满足题意.
②当,,令,
因为,所以,
故在单调递增,故,即有
故,
又在单调递增,
由零点存在性定理知,存在唯一实数,,
当,,单调递减,即递减,
所以,
此时在为减函数,所以,不合题意,应舍去.
综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点,,是椭圆上的动点,且面积的最大值为.
(1)求椭圆的方程及离心率;
(2)若是椭圆的左、右顶点,直线与椭圆在点处的切线交于点,当点在椭圆上运动时,求证:以为直径的圆与直线恒相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)某县一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.先库存磷酸盐10吨、硝酸盐66吨,在此基础上生产这两种混合肥料.若生产1车皮甲种肥料产生的利润为10000元;生产1车皮乙种肥料产生的利润为5000元.那么分别生产甲、乙两种肥料各多少车皮能产生最大的利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,为坐标原点,椭圆的左,右焦点分别为,离心率为,双曲线的左,右焦点分别为,,离心率为,已知,.
(1)求,的方程;
(2)过作的不垂直于轴的弦,为弦的中点,当直线与交于,两点时,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:
加工1个零件用时(分钟) | 20 | 25 | 30 | 35 |
频数(个) | 15 | 30 | 40 | 15 |
以加工这100个零件用时的频率代替概率.
(1)求的分布列与数学期望;
(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,点为上的动点,为的中点.
(1)请求出点轨迹的直角坐标方程;
(2)设点的极坐标为若直线经过点且与曲线交于点,弦的中点为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十二生肖是十二地支的形象化代表,即子(鼠)、丑(牛)、寅(虎)、卯(兔)、辰(龙)、巳(蛇)、午(马)、未(羊)、申(猴)、酉(鸡)、戌(狗)、亥(猪),每一个人的出生年份对应了十二种动物中的一种,即自己的属相.现有印着六种不同生肖图案(包含马、羊)的毛绒娃娃各一个,小张同学的属相为马,小李同学的属相为羊,现在这两位同学从这六个毛绒娃娃中各随机取一个(不放回),则这两位同学都拿到自己属相的毛绒娃娃的概率是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com