精英家教网 > 高中数学 > 题目详情

【题目】已知函数有两个零点.

1)求实数的取值范围;

2)设的两个零点,证明:.

【答案】1;(2)证明见解析

【解析】

1)求导得到,利用导数得到的最小值,从而要使有两个零点,则最小值小于,得到的范围,再利用零点存在定理证明所求的的范围符合题意;(2)利用分析法,要证,将问题转化为证明,设函数,利用导数研究的单调性,从而进行证明.

函数

所以

时,上恒成立,所以上单调递增,

至多只有一个零点,不符合题意,

时,由

所以时,单调递减,

时,单调递增,

所以取得极小值,也是最小值,

要有两个零点,则

,解得

所以

时,得

时,

,则

所以单调递增,则

所以

所以在区间上有且只有一个零点,在上有且只有一个零点,

所以满足有两个零点的的取值范围为.

2的两个零点,则

要证,即证

根据

可知

即证

即证,即证

即证

由(1)知上单调递增,

故只需证明

,所以只需证

,且

所以

所以上单调递减,

所以

所以上恒成立,

所以

故原命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)设,若函数的两个极值点恰为函数的两个零点,且的范围是,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】半正多面体(semiregular solid) 亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.

1)求一天内被感染人数为的概率的关系式和的数学期望;

2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.

i)求数列的通项公式,并证明数列为等比数列;

ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取

(结果保留整数,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是直角梯形,的中点,.

(1)证明:平面平面

(2)若与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线的参数方程为为参数,),以原点为极点,以轴正半轴建立极坐标系,曲线的极坐标系方程为.

1)写出直线的极坐标方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段 的延长线上,且满足,点的轨迹为.

(1)求曲线的极坐标方程;

(2)设点的极坐标为,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是(

A.甲、乙、丙三人至少一人选化学与全选化学是对立事件

B.甲的不同的选法种数为15

C.已知乙同学选了物理,乙同学选技术的概率是

D.乙、丙两名同学都选物理的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)证明函数在区间上单调递增;

2)证明函数(-π0)上有且仅有一个极大值点

查看答案和解析>>

同步练习册答案