【题目】已知函数有两个零点.
(1)求实数的取值范围;
(2)设、是的两个零点,证明:.
【答案】(1);(2)证明见解析
【解析】
(1)求导得到,利用导数得到的最小值,从而要使有两个零点,则最小值小于,得到的范围,再利用零点存在定理证明所求的的范围符合题意;(2)利用分析法,要证,将问题转化为证明,设函数,利用导数研究的单调性,从而进行证明.
函数,
所以,
当时,在上恒成立,所以在上单调递增,
至多只有一个零点,不符合题意,
当时,由得,
所以时,,单调递减,
时,,单调递增,
所以时取得极小值,也是最小值,
要有两个零点,则,
即,解得,
所以,
当时,得,
当时,,
设,则
所以单调递增,则,
所以,
所以在区间上有且只有一个零点,在上有且只有一个零点,
所以满足有两个零点的的取值范围为.
(2)、是的两个零点,则,
要证,即证,
根据,
可知,,
即证,
即证,即证,
即证,
设,,
由(1)知在上单调递增,
故只需证明,
而,所以只需证
令,且
所以,,
所以在上单调递减,
所以,
所以在上恒成立,
所以,
故原命题得证.
科目:高中数学 来源: 题型:
【题目】半正多面体(semiregular solid) 亦称“阿基米德多面体”,是由边数不全相同的正多边形为面的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形为面的半正多面体.如图所示,图中网格是边长为1的正方形,粗线部分是某二十四等边体的三视图,则该几何体的体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年12月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.
(1)求一天内被感染人数为的概率与、的关系式和的数学期望;
(2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.
(i)求数列的通项公式,并证明数列为等比数列;
(ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取)
(结果保留整数,参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知直线的参数方程为为参数,),以原点为极点,以轴正半轴建立极坐标系,曲线的极坐标系方程为.
(1)写出直线的极坐标方程和曲线的直角坐标方程;
(2)若直线与曲线相交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为,以坐标原点为极点,轴非负半轴为极轴建立极坐标系,点为曲线上的动点,点在线段 的延长线上,且满足,点的轨迹为.
(1)求曲线,的极坐标方程;
(2)设点的极坐标为,求面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门.若同学甲必选物理,则下列说法正确的是( )
A.甲、乙、丙三人至少一人选化学与全选化学是对立事件
B.甲的不同的选法种数为15
C.已知乙同学选了物理,乙同学选技术的概率是
D.乙、丙两名同学都选物理的概率是
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com