【题目】已知点,直线及圆.
(1)求过点的圆的切线方程.
(2)若直线与圆相切,求的值.
(3)若直线与圆相交于、两点,且弦的长为,求的值.
【答案】(1) 或; (2) 或;(3)
【解析】
(1)先由圆的方程得到圆心为,半径,分直线斜率不存在,与斜率存在两情况讨论,由直线与圆相切,得到圆心到直线距离相等,进而可求出结果;
(2)根据直线与圆相切,得到,求解,即可得出结果;
(3)先由点到直线距离公式,得到圆心到直线的距离为,根据弦长的一半与半径、圆心到直线的距离三者之间的关系,列出方程求解,即可得出结果.
(1)因为圆的圆心为,半径,
当直线的斜率不存在时,过点的切线方程为.
当直线斜率存在时,设所求直线方程为,即.
因为直线与圆相切,
所以圆心到直线的距离等于半径,
由题意得,解得,所以方程为,即;
因此,过点的圆的切线方程为或;
(2)因为直线与圆相切,
所以,由题意可得:,解得或;
(3)由点到直线距离公式可得:
圆心到直线的距离为,
又直线与圆相交于、两点,且弦的长为,
所以,解得.
科目:高中数学 来源: 题型:
【题目】如图,在正方体中,点P为AD的中点,点Q为上的动点,给出下列说法:
可能与平面平行;
与BC所成的最大角为;
与PQ一定垂直;
与所成的最大角的正切值为;
.
其中正确的有______写出所有正确命题的序号
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
()设曲线在处的切线为,到点的距离为,求的值.
()若对于任意实数,恒成立,试确定的取值范围.
()当时,是否存在实数,使曲线在点处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中,,,为的中点.
(I)若为上的一点,且与直线垂直,求的值;
(Ⅱ)在(I)的条件下,设异面直线与所成的角为45°,求直线与平面成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中错误的是( )
A. 先把高二年级的1000多学生编号为1到1000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为,,……的学生,这样的抽样方法是系统抽样法
B. 正态总体在区间和上取值的概率相等
C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D. 若一组数据1、、2、3的平均数是2,则该组数据的众数和中位数均是2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的离心率,连接椭圆的四个顶点得到的菱形的面积为.
求椭圆C的方程;
如图所示,该椭圆C的左、右焦点,作两条平行的直线分别交椭圆于A,B,C,D四个点,试求平行四边形ABCD面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:
(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,已知是正三角形,平面平面,,为的中点,在棱上,且.
(1)求证:平面;
(2)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com