精英家教网 > 高中数学 > 题目详情
直线与函数的图象的交点个数是 (     )
A.0B.1C.0或1D.以上均不对
C

试题分析:根据函数的定义:定义域内每一个对应唯一的,当在定义域范围内时,有唯一解,当无定义时,没有解.
点评:本题考查对函数的定义的理解,通过画图得出结论:直线与函数的图象至多有一个交点,属于基础题.本题易因为对函数概念理解不深导致错误.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数是定义在上的偶函数,已知当时,.
(1)求函数的解析式;
(2)求函数的单调递增区间;
(3)求在区间上的值域。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图1的一条折线表示;西红柿的种植成本与上市时间的关系用图2的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式;写出图2表示的种植成本与时间的函数关系式
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?

(注:市场售价和种植成本的单位:元/百千克,时间单位:天)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数
(I)求x为何值时,上取得最大值;
(II)设是单调递增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数,则的图像与直线的交点为,则下列说法错误的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列各图中,可表示函数y=f(x)的图象的只可能是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是定义在上的偶函数,且时,
(1)求
(2)求函数的表达式;
(3)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数的定义域为R,当时,,且对任意的实数R,等式成立.若数列满足,且
(N*),则的值为(     )
A.4024B.4023C.4022D.4021

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题共8分)
提高二环路的车辆通行能力可有效改善整个城区的交通状况,在一般情况下,二环路上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数。当二环路上的车流密度达到600辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过60辆/千米时,车流速度为80千米/小时,研究表明:当60≤x≤600时,车流速度v是车流密度x的一次函数。
(Ⅰ)当0≤x≤600时,求函数f(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过二环路上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值。(精确到1辆/小时)

查看答案和解析>>

同步练习册答案