精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
cosxsinx+cos2x+cos2x.
(I)求函数f(x)的最小正周期;
(II)在△ABC中,a,b,c分别是角A,B,C的对边,且锐角B满足f(B)=
1
2
,A=
π
4
,b=2,求a的值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦定理
专题:三角函数的求值,三角函数的图像与性质,解三角形
分析:(I)化简解析式f(x)=
3
sin(2x+
π
3
)+
1
2
,从而可求函数f(x)的最小正周期.
(II)由f(B)=
3
sin(2B+
π
3
)+
1
2
=
1
2
,整理可得B的值,由正弦定理可得a的值.
解答: 解:(I)∵f(x)=
3
cosxsinx+cos2x+cos2x=
3
sin(2x+
π
3
)+
1
2

∴函数f(x)的最小正周期T=
2
=π,
(II)∵f(B)=
3
sin(2B+
π
3
)+
1
2
=
1
2
,整理可得:sin(2B+
π
3
)=0,可得2B+
π
3
=kπ,k∈Z,
∴B=
2
-
π
6
,k∈Z,
∵B为锐角,
∴可得B=
π
3

∴由正弦定理可得:a=
bsinA
sinB
=
2
2
3
2
=
2
6
3
点评:本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦定理的应用,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

随即变量x的分布列如下x=(-1,0,1),p=(a,b,c),其中a,b,c为等差数列,则p(|x|=1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S是(  )
A、10B、15C、20D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知矩形ABCD中,PA⊥平面ABCD,M,N,R分别是AB,PC,CD的中点,求证:
(Ⅰ)直线AR∥平面PMC;
(Ⅱ)直线MN⊥直线AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数Z=(1+3i)(x-2i)为纯虚数,其中i为虚数单位.则实数x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

S={直线l|
sinθ
m
x+
cosθ
n
y=1,m,n为正常数,θ∈[0,2π)},给出下列结论:
①当θ=
π
4
时,S中直线的斜率为
n
m

②S中所有直线均经过同一个定点;
③当m=n时,存在某个定点,该定点到S中的所有直线的距离相等;
④当m>n时,S中的两条平行线间的距离的最小值为2n;
⑤S中的所有直线可覆盖整个直角坐标平面.
其中错误的结论是
 
.(写出所有错误结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x-
π
3
)(x∈[0,2π)),若存在实数x1x2,满足f(x1)=f(x2)(x1≠x2),则x1+x2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
3
,则双曲线的渐近线方程为(  )
A、y=±2x
B、y=±
2
2
x
C、y=±
1
2
x
D、y=±
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=log2(x2-4x+a)(a>4),若所有点(s,f(t))(s,t∈[1,3])构成一个正方形区域,则函数f(x)的单调增区间为(  )
A、[1,2]
B、[2,3]
C、(-∞,2]
D、[2,+∞)

查看答案和解析>>

同步练习册答案