精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2sinωx•cosωx+2bcos2ωx-b(其中b>0,ω>0)的最大值为2,直线x=x1、x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为数学公式
(1)求b,ω的值;
(2)若数学公式,求数学公式的值.

解:(1)f(x)=2sinωx•cosωx+2bcos2ωx-b=,…(2分),
故周期 ,…(3分),再由,所以ω=1.…(4分),
再由 ,…(5分),因为b>0,所以. …(6分)
(2)由 可得,求得.…(8分),
…(10分)
= …(11分),
=. …(12分).
分析:(1)利用三角函数的恒等变换化简函数f(x)的解析式,根据最小正周期求出ω,再根据最大值求出b的值.
(2)由,求得,根据 ,利用二倍角公式求得结果.
点评:本题主要考查三角函数的恒等变换及化简求值,由函数y=Asin(ωx+∅)的部分图象求函数的解析式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2-
1
x
,(x>0),若存在实数a,b(a<b),使y=f(x)的定义域为(a,b)时,值域为(ma,mb),则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2+log0.5x(x>1),则f(x)的反函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(m-1)x2-4mx+2m-1
(1)m为何值时,函数的图象与x轴有两个不同的交点;
(2)如果函数的一个零点在原点,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•上海)已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4
(2)若a1>0,且a1,a2,a3成等比数列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
已知函数f(x)=2|x-2|-x+5,若函数f(x)的最小值为m
(Ⅰ)求实数m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案