【题目】近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y与行驶时问 (单位:小时)的测试数据如下表:
(1)根据电池放电的特点,剩余电量y与行驶时间之间满足经验关系式:,通过散点图可以发现y与之间具有相关性.设,利用表格中的前8组数据求相关系数r,并判断是否有99%的把握认为与之间具有线性相关关系;(当相关系数r满足时,则认为有99%的把握认为两个变量具有线性相关关系)
(2)利用与的相关性及表格中前8组数据求出与之间的回归方程;(结果保留两位小数)
(3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X表示需要充电的数据组数,求X的分布列及数学期望.
附:相关数据:.
表格中前8组数据的一些相关量:,,
相关公式:对于样本,其回归直线的斜率和戗距的最小二乘估计公式分别为:,
相关系数.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和的直角坐标方程;
(2)已知曲线的极坐标方程为,点是曲线与的交点,点是曲线与的交点,、均异于原点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的左右焦点分别为,的周长为12.
(1)求点的轨迹的方程.
(2)已知点,是否存在过点的直线与曲线交于不同的两点,使得,若存在,求出直线的方程,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们打印用的A4纸的长与宽的比约为,之所以是这个比值,是因为把纸张对折,得到的新纸的长与宽之比仍约为,纸张的形状不变.已知圆柱的母线长小于底面圆的直径长(如图所示),它的轴截面ABCD为一张A4纸,若点E为上底面圆上弧AB的中点,则异面直线DE与AB所成的角约为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ=2.
(1)M为曲线C1上的动点,点P在线段OM上,且满足,求点P的轨迹C2的直角坐标方程;
(2)曲线C2上两点与点B(ρ2,α),求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律如图,有一张长方形球台ABCD,,现从角落A沿角的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则的值为( )
A.B.C.1D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆与抛物线有共同的焦点,且两曲线的公共点到的距离是它到直线 (点在此直线右侧)的距离的一半.
(1)求椭圆的方程;
(2)设为坐标原点,直线过点且与椭圆交于两点,以为邻边作平行四边形.是否存在直线,使点落在椭圆或抛物线上?若存在,求出点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com