精英家教网 > 高中数学 > 题目详情
3.已知抛物线E:y2=2px(P>0)的准线为x=-1,M,N为直线x=-2上的两点,M,N两点的纵坐标之积为-8,P为抛物线上一动点,PN,PM,分别交抛物线于A,B两点.
(1)求抛物线E的方程;
(2))问直线AB是否过定点,若过定点,请求出此定点;若不过定点,请说明理由.

分析 (1)由-$\frac{p}{2}$=-1得p=2,即可求抛物线E的方程;
(2)设P(x0,y0)、A(x1,y1)、B(x2,y2),直线AB方程为x=ny+m.联立抛物线方程得y2-4ny-4m=0,则y1y2=-4m,求出M,N的纵坐标,利用条件,即可得出直线AB是否过定点.

解答 解:(1)由-$\frac{p}{2}$=-1得p=2,
故抛物线方程y2=4x..…(4分)
(2)设P(x0,y0)、A(x1,y1)、B(x2,y2),直线AB方程为x=ny+m.
联立抛物线方程得y2-4ny-4m=0,则y1y2=-4m..…(6分)
由直线PA的斜率$\frac{4}{{y}_{1}+{y}_{0}}$,
则直线PA的方程:y-y0=$\frac{4}{{y}_{1}+{y}_{0}}$(x-x0),
又y02=4x0,即直线PA的方程:4x-(y1+y0)y+y1y0=0,
令x=-2,得yM=$\frac{{y}_{1}{y}_{0}-8}{{y}_{1}+{y}_{0}}$,同理yN=$\frac{{y}_{2}{y}_{0}-8}{{y}_{2}+{y}_{0}}$..…(8分)

yMyN=$\frac{{y}_{1}{y}_{0}-8}{{y}_{1}+{y}_{0}}$•yN=$\frac{{y}_{2}{y}_{0}-8}{{y}_{2}+{y}_{0}}$=-8,
整理得(y1y2+8)(y02+8)=0.
则y1y2=-8,即-4m=-8,∴m=2.
故直线PA的方程:x=ny+2,即直线AB过定点(2,0)..…(12分)

点评 本题考查抛物线的方程,考查直线与抛物线的位置关系,考查直线过定点,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.己知命题p:方程$\frac{{x}^{2}}{12-m}$+$\frac{{y}^{2}}{m-4}$=1表示焦点在x轴上的椭圆;命题q:点(m,3)在圆(x-10)2+(y-1)2=13内.若p∨q为真命题,p∧q为假命题,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知tan(3π-α)=-$\frac{1}{2}$,tan(β-α)=-$\frac{1}{3}$,则tan β=(  )
A.1B.$\frac{1}{7}$C.$\frac{5}{7}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.
(1)计算这10名学生的成绩的均值和方差;
(2))给出正态分布的数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面四边形ABCD中,已知$\overrightarrow{AC}=({1,3}),\overrightarrow{BD}=({9,-3})$,则四边形ABCD的面积为15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x+2)n=a0+a1(x-1)+a2(x-1)2…+an(x-1)n(n∈N*).
(1)求a0及Sn=$\sum_{i=1}^{n}$ai
(2)试比较Sn与(n-2)3n+2n2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={1,2},B={1,2,4},C={1,4,6},则(A∩B)∪C=(  )
A.{1}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,则z=-2x+y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数),结果如表.
表1:A类工人生产能力的频数分布表
生产能力分组[110,120)[120,130)[130,140)[140,150)
人数8x32
表2:B类工人生产能力的频数分布表
生产能力分组[110,120)[120,130)[130,140)[140,150)
人数6y2718
(1)确定x,y的值;
(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为工人的生产能力与工人的类别有关系?
生产能力分组
工人类别
[110,130)[130,150)总计
A类工人20525
B类工人304575
总计5050100
(3)工厂规定生产零件数在[130,140)的工人为优秀员工,在[140,150)的工人为模范员工,那么在样本的A类工人中的优秀员工和模范员工中任意抽2人进行示范工作演示,试写出所抽的模范员工的人数X的分布列和期望.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案