精英家教网 > 高中数学 > 题目详情

【题目】如图是某市101日至14日的空气质量指数趋势图,空气质量指数越小表示空气质量越好,空气质量指数小于100表示空气质量优良,下列叙述中不正确的是(

A.14天中有7天空气质量优良

B.14天中空气质量指数的中位数是103

C.1011日到1014日,空气质量越来越好

D.连续三天中空气质量指数方差最大的是105日至107

【答案】B

【解析】

根据题目给出的折线图的信息对选项进行逐一判断即可得到答案.

14天中空气质量指数小于100的有7天,所以这14天中有7天空气质量优良,故选项A正确;

14天中空气质量指数的中位数是,故选项B不正确;

1011日到1014日,空气质量指数越来越小,所以空气质量越来越好,故选项C正确;

连续三天中空气质量指数离散程度最大的是105日至107日,所以连续三天中空气质量指数方差最大的是105日至107日,故选项D正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上单调递增,求a的取值范围;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)讨论函数的单调性;

2)若,记函数的两个极值点为(其中),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足条件:存在正整数,使得对一切都成立,则称数列级等比数列;

1)已知数列2级等比数列,且前四项分别为,求的值;

2)若为常数),且数列3级等比数列,求所有可能的值,并求取最小正值时数列的前项和

3)证明:正数数列为等比数列的充要条件是数列既为2级等比数列,也为3级等比数列;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求证:在区间上无零点;

(2)求证:有且仅有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有以下命题:

若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};

若函数f(x)是偶函数,则f(|x|)=f(x);

若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;

若函数fx)存在反函数f1x),且f1x)与fx)不完全相同,则fx)与f1x)图象的公共点必在直线y=x上;

其中真命题的序号是 .(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 C 经过点 (2,3),它的渐近线方程为 y = ±.椭圆 C1与双曲线 C有相同的焦点,椭圆 C1的短轴长与双曲线 C 的实轴长相等.

1)求双曲线 C 和椭圆 C1 的方程;

2)经过椭圆 C1 左焦点 F 的直线 l 与椭圆 C1 交于 AB 两点,是否存在定点 D ,使得无论 AB 怎样运动,都有∠ADF = BDF ?若存在,求出 D 点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是_____

查看答案和解析>>

同步练习册答案