精英家教网 > 高中数学 > 题目详情

【题目】6名教师分配到3所薄弱学校去支教,每个学校至少分配一名教师,甲乙两人不能去同一所学校,丙丁两人必须去同一所学校,共有________种分配方案(用数字作答).

【答案】114

【解析】

由题意分三类,可按4、1、1或3、2、1或2、2、2分配,分别计算每一类的分配方法,第一类有(-1)种,第二类+()种,第三类2·,利用分类加法计数原理即可.

按题目要求可按4、1、1或3、2、1或2、2、2分配,

若按4、1、1分配,丙丁必须在4人里,需要从其余剩下的4人里选2人,有种,去掉选中甲乙的1种情况,有(-1)种选法,安排去3个学校,共有(-1)=30种;

若按3、2、1分配有两类,丙丁为2,甲乙中选1人作1,分配到3个学校有,丙丁在3人组中,从剩余4人中取1人,组成3人组,剩余3人取2人组成2人组,剩余1人构成1人组,去掉甲乙构成2人组的情况2种,共有种取法,安排去3个学校有()种,两类共有+()=72种;

若按2、2、2分配有2·=12种,∴共有30+72+12=114种分配方案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知对某校的100名学生进行不记名问卷调查,内容为一周的课外阅读时长和性别等进行统计,如表:

1)课外阅读时长在20以下的女生按分层抽样的方式随机抽取7人,再从7人中随机抽取2人,求这2人课外阅读时长不低于15的概率;

2)将课外阅读时长为25以上的学生视为“阅读爱好”者,25以下的学生视为“非阅读爱好”者,根据以上数据完成2×2列联表:

非阅读爱好者

阅读爱好者

总计

女生

男生

总计

能否在犯错概率不超过0.01的前提下,认为学生的“阅读爱好”与性别有关系?

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似的表示为,已知此生产线年产量最大为吨.

1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;

2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线方程为.

(1)求的解析式;

(2)若恒成立,则称的一个上界函数,当(1)中的为函数的一个上界函数时,求的取值范围;

(3)当时,对(1)中的,讨论在区间上极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱中, ,点是线段上的动点.

(1)当点的中点时,求证: 平面

(2)线段上是否存在点,使得平面平面?若存在,试求出的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论当时,函数的单调性;

2)当对任意的恒成立,其中.的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】体育测试成绩分为四个等级:优、良、中、不及格.某班50名学生参加测试结果如下:

等级

优(86100分)

良(7585分)

中(6074分)

不及格(159分)

人数

5

21

22

2

1)估计该班学生体育测试的平均成绩;

2)从该班任意抽取1名学生,求这名学生的测试成绩为“优”或“良”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线的焦点为,过点的直线交抛物线于两点.

(1)为坐标原点,求证:

(2)设点在线段上运动,原点关于点的对称点为,求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

1)讨论函数的单调性;

2)设函数,若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案