精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点. 为椭圆的右焦点, 为椭圆上关于原点对称的两点,连接分别交椭圆于两点.

⑴求椭圆的标准方程;

⑵若,求的值;

⑶设直线的斜率分别为 ,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.

【答案】123

【解析】试题分析:(1);(2)由椭圆对称性,知,所以此时直线方程为. (3,则通过直线和椭圆方程,解得 所以即存在

试题解析:

1)设椭圆方程为,由题意知:

解之得: ,所以椭圆方程为:

2)若,由椭圆对称性,知,所以

此时直线方程为

,得,解得舍去),

3)设,则

直线的方程为,代入椭圆方程,得

     

因为是该方程的一个解,所以点的横坐标

在直线上,所以

同理, 点坐标为

所以

即存在,使得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在底面是正三角形的三棱锥中,D 为PC的中点,

1)求证:平面

2)求 BD 与平面 ABC 所成角的大小;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行下面的程序框图,如果输入的,则输出的( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,四边形是矩形,平面平面,且, ,点上.

求证:(1)平面

(2)平面 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面在以为直径的为线段的中点在弧.

(1)求证:平面平面

(2)求证:平面平面

(3)设二面角的大小为的值.

【答案】(1)证明见解析;(2)证明见解析;(3).

【解析】试题分析:

(1)ABC中位线的性质可得平面.由线面平行的判断定理可得平面.结合面面平行的判断定理可得平面.

(2)由圆的性质可得由线面垂直的性质可得,据此可知平面.利用面面垂直的判断定理可得平面平面.

(3)以为坐标原点,所在的直线为轴,所在的直线为轴,建立空间直角坐标系.结合空间几何关系计算可得平面的法向量平面的一个法向量,则.由图可知为锐角,故.

试题解析:

(1)证明:因为点为线段的中点,点为线段的中点,

所以,因为平面平面,所以平面.

因为,且平面平面,所以平面.

因为平面平面

所以平面平面.

(2)证明:因为点在以为直径的上,所以,即.

因为平面平面,所以.

因为平面平面,所以平面.

因为平面,所以平面平面.

(3)解:如图,以为坐标原点,所在的直线为轴,所在的直线为轴,建立空间直角坐标系.

因为,所以.

延长于点.因为

所以.

所以.

所以.

设平面的法向量.

因为,所以,即.

,则.

所以.

同理可求平面的一个法向量.

所以.由图可知为锐角,所以.

型】解答
束】
21

【题目】已知圆直线.

(1)求与圆相切且与直线垂直的直线方程

(2)在直线为坐标原点),存在定点(不同于点),满足:对于圆上任一点都有为一常数试求所有满足条件的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为二次函数,不等式的解集是,且在区间上的最大值为12

1)求的解析式;

2)设函数上的最小值为,求的表达式及的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.

(1)当x∈Z时,求A的非空真子集的个数;

(2)当x∈R时,若A∩B=,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”是一个类似计步数据库的公众账号.用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:

步数/

10000以上

男生人数/

1

2

7

15

5

女性人数/

0

3

7

9

1

规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.

(1)填写下面列联表(单位:人),并根据列表判断是否有90%的把握认为“评定类型与性别有关”;

积极性

懈怠性

总计

总计

附:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步行数在的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线的斜率为,直线的斜率为,且.

(1)求点的轨迹的方程;

(2),连接并延长,与轨迹交于另一点,点中点,是坐标原点的面积之和为,求的最大值.

查看答案和解析>>

同步练习册答案