精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sinxcosx+2,记函数f(x)的最小正周期为β向量a=(2,cosα),b=(1,tan(α))(0<α<),a·b

(1)f(x)在区间上的最值

(2)的值

【答案】(2)最大值是4,最小值是2.(2)

【解析】试题分析:

(1)把函数化为一个角的一个三角函数形式,再利用正弦函数性质得最值;

(2)由三角函数周期求出,再由平面向量数量积的坐标运算公式求出,化简待求式,最后由同角关系式可得结论.

试题解析:

(1)f(x)=sinxcosx+2=2sin(x)+2,

x∈[],∴x∈[,π],

f(x)的最大值是4,最小值是2.

(2)β=2π,

a·b=2+cosαtan(α+π)=2+sinα

sinα,又0<α<

=2cosα=2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某项科研活动共进行了5次试验,其数据如下表所示:

特征量

第1次

第2次

第3次

第4次

第5次

555

559

551

563

552

601

605

597

599

598

(1)从5次特征量的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;

(2)求特征量关于的线性回归方程;并预测当特征量为570时特征量的值.

(附:回归直线的斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线ly=3x+3,求:

(1)点P(4,5)关于直线l的对称点坐标;

(2)直线l1yx-2关于直线l的对称直线的方程;

(3)直线l关于点A(3,2)的对称直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 分别是其左、右焦点,以线段为直径的圆与椭圆有且仅有两个交点.

(1)求椭圆的方程;

(2)设过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,点横坐标的取值范围是,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃B点表示四月的平均最低气温约为5℃下面叙述不正确的是 ( )

A. 各月的平均最低气温都在0℃以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于20℃的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各10件样品,测量产品中某种元素的含量(单位:毫克),如图是测量数据的茎叶图:

规定:当产品中的此种元素含量不小于16毫克时,该产品为优等品.

(1)从乙厂抽出的上述10件样品中,随机抽取3件,求抽到的3件样品中优等品数的分布列及其数学期望

(2)从甲厂的10件样品中有放回地逐个随机抽取3件,也从乙厂的10件样品中有放回地逐个随机抽取3件,求抽到的优等品数甲厂恰比乙厂多2件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的椭圆的两焦点分别为双曲线的顶点,直线与椭圆交于两点,且,点是椭圆上异于的任意一点,直线外的点满足 . 

(1)求点的轨迹方程;

(2)试确定点的坐标,使得的面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】423日是世界读书日,惠州市某中学在此期间开展了一系列的读书教育活动。为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查。下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,且将日均课外阅读时间不低于60分钟的学生称为读书迷,低于60分钟的学生称为非读书迷

)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为读书迷与性别有关?

)将频率视为概率,现在从该校大量学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中读书迷的人数为,若每次抽取的结果是相互独立的,求的分布列、数学期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面,底面为直角梯形, ,且为线段上的一动点.

(Ⅰ)若为线段的中点,求证: 平面

(Ⅱ)当直线与平面所成角小于,求长度的取值范围.

查看答案和解析>>

同步练习册答案