精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线上一点到其焦点的距离为为圆心且与抛物线准线相切的圆恰好过原点.点轴的交点 两点在抛物线上且直线点及的直线交抛物线于点.

1)求抛物线的方程

2)求证:直线过一定点并求出该点坐标.

【答案】(1) (2)直线过定点证明见解析.

【解析】试题分析:

(1)由题意可得为等腰三角形.轴于,则据此可得抛物线的方程为.

(2)的方程为联立直线方程与抛物线方程可得.结合韦达定理有.直线的方程为.可得则直线过定点.

试题解析:

1上一点到其焦点的距离为

∵以为圆心且与抛物线准线相切的圆恰好过原点,即为等腰三角形.

轴于,则

∴抛物线的方程为.

2)证明:设的方程为,代入抛物线的方程,可得.

,则

直线的方程为

可得

.

直线的方程为.

可得

由①②可得 ∴直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方体中, 分别为的中点, 上一个动点,且.

(1)当时,求证:平面平面

(2)是否存在,使得?若存在,请求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是(  )

A. 恰有1件一等品 B. 至少有一件一等品

C. 至多有一件一等品 D. 都不是一等品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(1)求证:当时,对任意都有

(2)若函数有两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体中,,点E是线段AB中点.

证明:

求二面角的大小的余弦值;

A点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校举行了一次安全教育知识竞赛,竞赛的原始成绩采用百分制,已知高三学生的原始成绩均分布在发布成绩使用等级制各等级划分标准见表.

原始成绩

85分及以上

70分到84

60分到69

60分以下

等级

优秀

良好

及格

不及格

为了解该校高三年级学生安全教育学习情况,从中抽取了名学生的原始成绩作为样本进行统计按照的分组作出频率分布直方图如图所示其中等级为不及格的有5人,优秀的有3人.

1)求和频率分布直方图中的的值

2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若该校高三学生共1000人,求竞赛等级在良好及良好以上的人数;

3)在选取的样本中,从原始成绩在80分以上的学生中随机抽取2名学生进行学习经验介绍,求抽取的2名学生中优秀等级的学生恰好有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的长轴长是短轴长的倍,且过点

(1)求椭圆的标准方程;

(2)若的顶点在椭圆上, 所在的直线斜率为 所在的直线斜率为,若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设,试讨论单调性;

(2)设,当时,任意,存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让学生了解环保知识,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100)进行统计.请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:

分组

频数

频率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

80.5~90.5

16

0.32

90.5~100.5

合计

50

(Ⅰ)填充频率分布表的空格(将答案直接填在表格内);

(Ⅱ)补全频数条形图;

(Ⅲ)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?

查看答案和解析>>

同步练习册答案