分析 (1)由题意得$\left\{\begin{array}{l}f'(-1)=3{a_1}+{a_3}=0\\ f(-1)=-{a_1}-{a_3}=\frac{2}{3}\end{array}\right.$,求出a1,a3,即可求y=f(x)的表达式;
(2)求导数,利用$f'({x_1})•f'({x_2})=(x_1^2-1)(x_2^2-1)=-1$,即可得出结论;
(3)分别求出f(xn)、f(ym)|的范围,即可证明结论.
解答 解:(1)∵函数y=f(x)的图象关于原点对称,∴函数y=f(x)是奇函数,
即f(-x)=-f(x)恒成立,∴a0=a2=a4=0,$f(x)={a_1}{x^3}+{a_3}x$(1分)
由题意得$\left\{\begin{array}{l}f'(-1)=3{a_1}+{a_3}=0\\ f(-1)=-{a_1}-{a_3}=\frac{2}{3}\end{array}\right.$,(2分)∴$\left\{\begin{array}{l}{a_1}=\frac{1}{3}\\{a_3}=-1\end{array}\right.$,∴$f(x)=\frac{1}{3}{x^3}-x$
经验证f(x)满足题意∴$f(x)=\frac{1}{3}{x^3}-x$…(4分)
(2)f'(x)=x2-1,设所求两点为(x1,f(x1)),(x2,f(x2)),
其中$({x_1},{x_2}∈[-\sqrt{2},\sqrt{2}])$,得$f'({x_1})•f'({x_2})=(x_1^2-1)(x_2^2-1)=-1$
因为$x_1^2-1,x_2^2-1∈[-1,1]$,
所以$\left\{\begin{array}{l}x_1^2-1=-1\\ x_2^2-1=1\end{array}\right.$或$\left\{\begin{array}{l}x_1^2-1=1\\ x_2^2-1=-1\end{array}\right.$
即x1,x2为$0,±\sqrt{2}$或$±\sqrt{2},0$
从而所求两点的坐标分别为$(0,0),(\sqrt{2},-\frac{{\sqrt{2}}}{3})$或者$(0,0),(-\sqrt{2},\frac{{\sqrt{2}}}{3})$;…(9分)
(3)证明:易知${x_n}∈[\frac{1}{2},1)$,当$x∈[\frac{1}{2},1)$时f'(x)<0,即f(x)在$[\frac{1}{2},1)$上递减,
得$f({x_n})∈(f(1),f(\frac{1}{2})]$,即$f({x_n})∈(-\frac{2}{3},-\frac{11}{24}]$.
又${y_m}∈(-\sqrt{2},-\frac{2}{3}\sqrt{2}]$,函数在x=-1处取极大值,
又$f(-\sqrt{2})=\frac{{\sqrt{2}}}{3}$,$f(-1)=\frac{2}{3}$,$f(-\frac{{2\sqrt{2}}}{3})$=$\frac{{38\sqrt{2}}}{81}$,
得$f({y_m})∈(\frac{{\sqrt{2}}}{3},\frac{2}{3}]$.
∴$|f({x_n})-f({y_m})|=f({y_m})-f({x_n})<\frac{2}{3}-(-\frac{2}{3})=\frac{4}{3}$…(14分)
点评 本题考查函数解析式的求解,考查导数知识的运用,考查不等式的证明,知识综合性强.
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{5}$ | B. | $-\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $-\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
月份x | 1 | 2 | 3 | 4 |
用水量 | 4.5 | 4 | 3 | 2.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com