精英家教网 > 高中数学 > 题目详情
18.已知函数y=-cos(x+$\frac{π}{3}$)+2按向量$\overrightarrow{a}$平移所得图象的解析式为y=f(x),当y=f(x)为奇函数,向量$\overrightarrow{a}$可以是(-$\frac{π}{6}$,-2).

分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:把函数y=-cos(x+$\frac{π}{3}$)+2=cos($\frac{2π}{3}$-x)+2=cos(x-$\frac{2π}{3}$)+2的图象向左平移$\frac{π}{6}$个单位,
可得y=cos(x-$\frac{π}{2}$)+2=sinx+2的图象;
再把所得图象向下平移2个单位,可得f(x)=sinx的图象,且f(x)为奇函数.
故函数y=-cos(x+$\frac{π}{3}$)+2按向量$\overrightarrow{a}$平移所得图象的解析式为y=f(x),当y=f(x)为奇函数,
故向量$\overrightarrow{a}$=(-$\frac{π}{6}$,-2),
故答案为:(-$\frac{π}{6}$,-2).

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.化简:${({\frac{2}{3}})^0}+{2^{-2}}×{({\frac{9}{16}})^{-\frac{1}{2}}}+(lg8+lg125)$=$\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)计算:${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}$
(2)已知角α顶点在原点,始边与x轴非负半轴重合,终边在函数y=-3x(x≤0)的图象上.求$\frac{4sinα-2cosα}{3sinα+5cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的程序框图,运行相应的程序,则输出a的值为(  )
A.7B.9C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个球内有一内接长方体,其长、宽、高分别为5,4,3,则球的半径为(  )
A.5$\sqrt{2}$B.2$\sqrt{5}$C.$\sqrt{5}$D.$\frac{5\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.先把函数y=f(x)的图象向右移$\frac{π}{6}$个单位,再把横坐标伸长到原来的2倍,再把纵坐标缩短到原来的$\frac{2}{3}$,所得图象的解析式是y=2sin($\frac{1}{2}$x+$\frac{π}{3}$),求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求证:$\frac{cos(10π+α)sinα}{sin(-α-2π)cos(-π-α)cos(π+α)}$=-$\frac{1}{cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知x是三角形的内角,且sinx-cos(x-π)=$\frac{1}{5}$,则cos2x=-$\frac{7}{25}$.

查看答案和解析>>

同步练习册答案