分析 根据已知中函数y=3${\;}^{{x}^{2}-1}$,用y表示x,进而可得原函数的反函数.
解答 解:∵-1≤x≤0时,y=3${\;}^{{x}^{2}-1}$∈[$\frac{1}{3}$,1],
则x2-1=log3y,
则x2=log3y+1,
则x=$-\sqrt{{log}_{3}y+1}$,y∈[$\frac{1}{3}$,1],
即函数y=3${\;}^{{x}^{2}-1}$,(-1≤x≤0)的反函数是y=$-\sqrt{{log}_{3}x+1}$,x∈[$\frac{1}{3}$,1],
故答案为:y=$-\sqrt{{log}_{3}x+1}$,x∈[$\frac{1}{3}$,1]
点评 本题考查反函数的求法,解题时要认真审题,注意对数式和指数式的互相转化,正确掌握原函数和反函数互换定义域和值域.
科目:高中数学 来源: 题型:选择题
A. | 6x-y-18=0 | B. | 8x-y-24=0 | C. | 5x-2y-15=0 | D. | 8x-3y-24=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{1}{4}$,$\frac{\sqrt{3}}{4}$] | B. | [$\frac{\sqrt{3}}{4}$,$\frac{1}{2}$] | C. | [$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{6}}{6}$] | D. | [$\frac{3}{8}$,$\frac{\sqrt{3}}{4}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | x2+(y-2)2=10 | B. | x2+(y+2)2=10 | C. | (x-2)2+y2=10 | D. | (x+2)2+y2=10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com