【题目】如图,直角梯形ABCD中,AB∥CD,AB⊥AD,AB=2CD=2AD=2.在等腰直角三角形CDE中,∠C=90°,点M,N分别为线段BC,CE上的动点,若 , 则 的取值范围是 .
【答案】[ ,﹣1]
【解析】解:以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立直角坐标系, 可得A(0,0),B(2,0),C(1,1),D(0,1),E(1,2),
直线BC的方程为y=2﹣x,
设M(m,2﹣m),N(1,n),(1≤m,n≤2),
由 ,可得m+n(2﹣m)= ,
即有n= ∈[1,2],
解得1≤m≤ ,
则 =(﹣m,m﹣1)(1,n﹣1)=﹣m+(m﹣1)(n﹣1)
=﹣m+ ,
可令t=2﹣m( ≤t≤1),
则 =t﹣2+
=t+ ﹣ ≥2 ﹣ = ,
当且仅当t= ,即t= ∈[ ,1],m=2﹣ 时,取得最小值 ,
由t=1可得1+ ﹣ =﹣1;t= 时, +1﹣ =﹣1.
可得最大值为﹣1.
则 的取值范围是[ ,﹣1].
所以答案是:[ ,﹣1].
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,|φ|< )的图象在 y轴左侧的第一个最高点为(﹣ ,3),第﹣个最低点为(﹣ ,m),则函数f(x)的解析式为( )
A.f(x)=3sin( ﹣2x)
B.f(x)=3sin(2x﹣ )
C.f(x)=3sin( ﹣2x)
D.f(x)=3sin(2x﹣ )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx(x>0).
(Ⅰ)求证:f(x)≥1﹣ ;
(Ⅱ)设g(x)=x2f(x),且关于x的方程x2f(x)=m有两个不等的实根x1 , x2(x1<x2).
(i)求实数m的取值范围;
(ii)求证:x1x22< .
(参考数据:e=2.718, ≈0.960, ≈1.124, ≈0.769,ln2≈0.693,ln2.6≈0.956,ln2.639≈0.970.注:不同的方法可能会选取不同的数据)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ex(2x﹣3)﹣ax2+2ax+b,若函数 f(x)存在两个极值点x1 , x2 , 且极小值点x1大于极大值点x2 , 则实数a的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,离心率 ,它的长轴长等于圆x2+y2﹣2x+4y﹣3=0的直径.
(1)求椭圆 C的方程;
(2)若过点 的直线l交椭圆C于A,B两点,是否存在定点Q,使得以AB为直径的圆经过这个定点,若存在,求出定点Q的坐标;若不存在,请说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.
(Ⅰ)求证:B1F⊥EC1;
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015全国统考II)设函数f(x)=ln(1+|x|)-,则使得f(x)f(2x-1)成立的x的取值范围是()
A.(,1)
B.(-,)(1,+)
C.(-,)
D.(-,-)(,+)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com