精英家教网 > 高中数学 > 题目详情
3.已知f(x)=-$\frac{1}{3}$x3+2x2+2x,若存在满足-1≤x0≤3的实数x0,使得曲线y=f(x)在点(x0,f(x0))处的切线与直线x+my-10=0垂直,则实数m的取值范围是(  )
A.[6,+∞)B.[-∞,2]C.[-3,6]D.[5,6]

分析 求出函数的导数,求出切线的斜率,再由两直线垂直斜率之积为-1,得到4x0-x02+2=m,再由二次函数求出最值即可.

解答 解:函数f(x)=-$\frac{1}{3}$x3+2x2+2x的导数为f′(x)=-x2+4x+2.
曲线f(x)在点(x0,f(x0))处的切线斜率为4x0-x02+2,
由于切线垂直于直线x+my-10=0,则有4x0-x02+2=m,
由于-1≤x0≤3,由4x0-x02+2=-(x0-2)2+6,
对称轴为x0=2,
当且仅当x0=2,取得最大值6;
当x0=-1时,取得最小值-3.
故m的取值范围是[-3,6].
故选:C.

点评 本题考查导数的几何意义:曲线在某点处的切线的斜率,考查两直线垂直的条件和二次函数最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x,x≥0}\\{-{x}^{2}-2x,x<0}\end{array}\right.$.
(Ⅰ)判断f(x)的奇偶性;
(Ⅱ)设函数f(x)在[t,t+4](t∈R)上的最大值为g(t),求g(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知椭圆的中心在原点,以坐标轴为对称轴,且长轴长是短轴长的3倍,并且经过点P(3,0),求椭圆方程;
(2)与双曲线x2-2y2=2有公共渐近线,且过点M(2,-2),求此双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1所示,抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0),与y轴交与点C(0,-3).
(1)求抛物线的解析式;
(2)在BC下方的抛物线上是否存在点E,使△EBC的面积最大,如果存在,请求出最大面积及点E的坐标;如果不存在,请说明理由.
(3)如图2所示,过点C作CP∥AB交抛物线与点P,在抛物线上是否存在点M,将线段PM绕点P旋转90°后,点M恰好落在x轴上的点M1处,如果存在,请求出点M的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设双曲线C:$\frac{{x}^{2}}{4}$-y2=λ(λ≠0),其中左准线方程为x=-$\frac{4\sqrt{10}}{5}$.
(1)求λ的值及左右两焦点F1,F2的坐标;
(2)设M是双曲线C上一点,且|OM|=$2\sqrt{2}$,F1,F2是椭圆E的两个顶点,并且椭圆E过点M,求椭圆E的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,$\frac{a}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{\sqrt{3}}{3}$.
(Ⅰ)求双曲线C的方程;
(Ⅱ)设直线1是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A,B,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A={(x,y)|x+y=2},B={(x,y)|x-y=4},则A∩B=(  )
A.{3,-1}B.{x=3,y=-1}C.{(3,-1)}D.(3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.${∫}_{0}^{\frac{π}{2}}$(1-2sin2$\frac{x}{2}$)dx=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.不等式(x+1)(x-2)>4的解集是{x|x<-2或x>3}.

查看答案和解析>>

同步练习册答案