精英家教网 > 高中数学 > 题目详情

【题目】已知在极坐标系中点C的极坐标为.

(1)求出以点C为圆心,半径为2的圆的极坐标方程(写出解题过程)并画出图形;

(2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程.

【答案】见解析

【解析】(1)如图,设圆C上任意一点A(ρ,θ),则∠AOC=θ--θ.

由余弦定理得,AC2=OA2+OC2-2OA·OCcos

即4+ρ2-4ρcos=4.

∴圆C的极坐标方程ρ=4cos.

(2)在直角坐标系中,点C的坐标为(1,),可设圆C上任意一点P(1+2cos α,+2sin α),又令M(x,y),

∵Q(5,-),M是线段PQ的中点.

∴M的参数方程为

(α为参数).

∴点M的轨迹的普通方程为(x-3)2+y2=1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数图象过点且在该点处的切线与直线垂直

(1)求实数的值

(2)对任意给定的正实数曲线上是否存在两点使得是以为直角顶点的直角三角形且此三角形斜边中点在轴上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 过椭圆 的短轴端点, 分别是圆与椭圆上任意两点,且线段长度的最大值为3.

(1)求椭圆的方程;

(2)过点作圆的一条切线交椭圆两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的图象在处的切线方程;

(2)若函数上有两个不同的零点,求实数的取值范围;

(3)是否存在实数,使得对任意的,都有函数的图象在的图象的下方?若存在,请求出最大整数的值;若不存在,请说理由.

(参考数据: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作

不太主动参加班级工作

合计

学习积极性高

18

7

25

学习积极性一般

6

19

25

合计

24

26

50

(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?

(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.

参考公式与临界值表:K2.

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为,短轴的一个端点为.过椭圆左顶点的直线与椭圆的另一交点为.

(1)求椭圆的方程;

(2)若与直线交于点,求的值;

(3)若,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查投入广告费t(百万元),可增加销售额约为-t25t(百万元)(0t5) (注:收益=销售额-投放)

1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?

2)现该公司准备共投入3百万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x(百万元),可增加的销售额约为-x3x23x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范围.

查看答案和解析>>

同步练习册答案