【题目】如图所示,三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A﹣B1E﹣B的正弦值为 ,求CE的长.
【答案】解:(Ⅰ)证明:因为AB⊥平面BB1C1C,BC1平面BB1C1C,所以AB⊥BC1,
在△CBC1中,BC=1,CC1=BB1=2,∠BCC1=60°,
由余弦定理得:BC12=BC2+CC12﹣2BCCC1cos∠BCC1=12+22﹣2×1×2×cos60°=3,
所以B1C= ,
故BC2+BC12=CC12,所以BC⊥BC1,
又BC∩AB=B,∴C1B⊥平面ABC;
(Ⅱ)由(Ⅰ)可知,AB,BC,BC1两两垂直.以B为原点,BC,BA,BC1所在直线
为x,y,z轴建立空间直角坐标系.
则,则B(0,0,0),A(0,1,0),C(1,0,0),C1(0,0, ),B1(﹣1,0, )
, ,令 ,∴ ,
,
设平面AB1E的一个法向量为 .
,令z= ,则x= ,y= ,
∴ ,.∵AB⊥平面BB1C1C, 是平面的一个法向量,
|cos< >|= ,两边平方并化简得2λ2﹣5λ+3=0,所以λ=1或 .
∴CE=CC1=2或CE= CC1=3.
【解析】(Ⅰ)证直线垂直于平面,通过证明平面内有两条相交的直线与所给直线垂直;(Ⅱ)利用向量求二面角的平面角思路比较简单清晰,但是计算时需要认真并有良好的运算习惯.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
科目:高中数学 来源: 题型:
【题目】已知 , 是非零不共线的向量,设 = + ,定义点集M={K| = },当K1 , K2∈M时,若对于任意的r≥2,不等式| |≤c| |恒成立,则实数c的最小值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ln(x+m)﹣nlnx.
(1)当m=1,n>0时,求函数f(x)的单调减区间;
(2)n=1时,函数g(x)=(m+2x)f(x)﹣am,若存在m>0,使得g(x)>0恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的多面体是由一个直平行六面体被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求证:BD⊥平面ADG;
(2)求直线GB与平面AEFG所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为F1 , 有一小球A从F1处以速度v开始沿直线运动,经椭圆壁反射(无论经过几次反射速度大小始终保持不变,小球半径忽略不计),若小球第一次回到F1时,它所用的最长时间是最短时间的5倍,则椭圆的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥A﹣BCD中,已知△ABD,△BCD都是边长为2的等边三角形,E为BD中点,且AE⊥平面BCD,F为线段AB上一动点,记 .
(1)当 时,求异面直线DF与BC所成角的余弦值;
(2)当CF与平面ACD所成角的正弦值为 时,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的质量以其质量指标衡量,并依据质量指标值划分等级如表:
质量指标值m | m<185 | 185≤m<205 | M≥205 |
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查的数据,能否认为该企业生产这种产品符合“一、二等品至少要占到全部产品的92%的规定”?
(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品的质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com